Modulhandbuch

Pflichtmodule Für den Studiengang

"Ingenieurwissenschaften"

HAWK Hochschule für angewandte Wissenschaft und Kunst Fachhochschule Hildesheim/Holzminden/Göttingen Fakultät Ingenieurwissenschaften und Gesundheit

Modulhandbuch 2025

Pflichtmodule für den Studiengang "Ingenieurwissenschaften"

Erläuterungen / Abkürzungen:		
<u>Prüfungsformen</u> :	Zeitumfang: (V)	BA = Bachelor
A = Abschlussarbeit	s. Modulblatt	MA = Master
BÜ = Berufspraktische Übungen	(xh)	
E = Entwurf	90 – 180h	SWS = Semesterwochenstunden
EA = Experimentelle Arbeit	120 – 300h	Präsenz = Präsenzzeit in Stunden
EDRP = Erstellung und Dokumentation von	xh	Eigenst. = Eigenstudium in Stunden
Rechnerprogrammen. Die Bearbeitungszeit als		Cr. = Credits (ECTS-Punkte)
Studienleistung legt die		SL = Studienleistung
Prüferin oder der Prüfer fest, bei Nichtfestlegung gilt ein		PL = Prüfungsleistung
Semester. EX = Exkursion	30-60h	PVL = Vorleistung als Voraussetzung zur Zulassung zur Prüfung
K = Klausur (xh)	s. Modulblatt	V = Vorbereitung
FS = Fallstudie	60 – 120h	P = Prüfung
H = Hausarbeit	60 – 120h	
KQ = Kolloquium	30h	
	0.5h P	
LP = Laborpraktikum	90 – 150h	
M = Mündliche Prüfung	30h	
	0.5h P	
OB = Open Book	xh	
PA = Projektarbeit	90 – 180h	
PF = Portfolio	60 – 120h	
PR = Präsentation	30 – 60h, 0.5h P	
R = Referat	30 – 60h, 0.5h P	
SE = Systementwurf	120 – 180h	
ST = Studienarbeit	90 -180h	
xh = Bearbeitungszeit in x Zeitstunden		Die Modulprüfungen können von der
[] = Liste möglicher Prüfungsformen, Gewichtung und Auswahl (+ und / oder) wird zu Semester- beginn vom Dozenten bekanntgegeben.		Prüfungskommission durch andere Prüfungsarten ersetzt werden (siehe Prüfungsordnung – allgemeiner Teil).

Bachelor Ingenieurwissenschaften

Differential- und Integralrechnung

Modulname:

Modulname	Modulcode
Mathematik: Differential- und Integralrechnung (Analysis)	BA I - C010
Modulverantwortliche/r	Fakultät
Studiendekan*in	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang

Bachelor Ingenieurwissenschaften, Medizintechnik, Informatik und Robotik

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	I	Pflichtfach	6.0

Voraussetzungen laut Prüfungsordnung	
keine	

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
1.	LV Mathematik - Differential- und Integralrechnung	Pflichtfach	6.0	4V 2Ü 0L 0S 0P
Summe (Pflicht und Wahlpflicht)				180

Qualifikationsziele

- I. **Wissen**: Die Studierenden können grundlegende mathematische Begriffe und Modelle aus den Bereichen der Funktionen sowie der Differential- und Integralrechnung von Funktionen einer und mehrerer Variablen benennen und beschreiben.
- 2. **Verstehen**: Die Studierenden können
 - bezogen auf die Lehrinhalte Modelle in Naturwissenschaft und Technik verstehen,
 - mathematische Sprache zur Beschreibung naturwissenschaftlich-technischer Zusammenhänge nutzen,
 - die Bedeutung der Differential- und Integralrechnung erklären.
- 3. **Anwenden**: Die Studierenden können
 - eine Kurvendiskussion durchführen,
 - mit Grenzwerten und Folgen umgehen,
 - Funktionen einer und mehrerer Variablen analytisch untersuchen.
- 4. **Analysieren**: Die Studierenden können mathematische Modelle verwenden, um spezifische naturwissenschaftlich-technische Probleme zu analysieren
- 5. **Synthetisieren**: Die Studierenden können sich selbständig in Lerngruppen organisieren und eigene Lernprozesse in der Diskussion zu überprüfen. Sie sind in der Lage, an der Wissensaneignung in seminaristischen Vorlesungen aktiv mitzuwirken,

Lösungsvorschläge für Aufgaben in Lerngruppen zu erarbeiten und diese zu präsentieren.

Zu erbringende Prüfungsleistung

K2 oder Semesterbegleitende K1[50%] + K1[50%]

Modulname			Modulcode			
Mathematik: Differential- und Integralrechr			nung (Analysis)		BA I - C010	
Veranstaltungsname		Veranstaltungsart		Veranstaltungscode		
Differential- und Integralrechnung (Analysis)		Vorlesung/Übung		BA I - C010-VI		
Lehrende/r		Fakultät		Arbeitsaufwand		
Studiendekan*in		Ingenieurwissenschaften und		Präsenzstudium:	90 WS	
		Gesundheit			Eigenstudium:	90 WS
Angebotshäufigkeit	ECTS	SWS Sprache				
nur im Wintersemester	6.0	6.0 deutsch				

Inhalte

- Mengenlehre, Aussagenlogik, äquivalente Umformungen
- Funktionen einer reellen Variablen, insbesondere:
 - spezielle Funktionen (trigonometrische Funktionen, Arkusfunktionen, Logarithmusfunktionen, Exponentialfunktionen, etc.)
 - grundlegende Eigenschaften von Funktionen (Symmetrie, Periodizität, Monotonie, Krümmungsverhalten, Extrema)
- Zahlenfolgen, Grenzwerte und Stetigkeit
- Differentialrechnung in einer und mehreren Variablen
 - Differenzierbarkeit
 - Taylor-Polynome und Taylor-Reihen
 - Skalar- und Vektorfelder (Gradient, Divergenz, Rotation)
- Integralrechnung in einer (unbestimmte, bestimmte und uneigentliche Integrale) und mehreren Variablen, Kugel-/Polarkoordinaten

Zusätzliche Angaben auch PO21

Modulname: Elektrotechnik

Modulname	Modulcode
Elektrotechnik	BA I - C020
Modulverantwortliche/r	Fakultät
Prof. Dr. Jens Peter Kärst	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang

Bachelor Ingenieurwissenschaften, Medizintechnik, Informatik und Robotik

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	I	Pflichtfach	6.0

Voraussetzungen laut Prüfungsordnung
keine

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
I.	LV Elektrotechnik	Pflichtfach	5.0	3V IÜ IL 0S 0P
Summe (Pflicht und Wahlpflicht)				180

Qualifikationsziele

Die Studierenden können

- grundlegende Gleichungen der Elektrotechnik wiedergeben und erläutern
- elektrische und magnetische Felder beschreiben und in ihrer Wirkung unterscheiden
- ihre fachlichen Kenntnisse im Gleich- und Wechselstromkreis sicher anwenden
- in der Gruppe einen Arbeitsauftrag zielgerichtet planen und erfolgreich durchführen

Zu erbringende Prüfungsleistung

K1+K1 (jeweils 50%) + LP

Modulname: Elektrotechnik

Modulname	Modulcode		
Elektrotechnik	Ba I - C020		
Veranstaltungsname	Veranstaltungsart	Veranstaltungscode	
LV Mathematik 1	Vorlesung/Übung	Ba I – C020-VI	
Lehrende/r	Fakultät	Arbeitsaufwand	
Prof. Dr. Jens Peter Kärst	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 75 WS Eigenstudium: 105 WS	

Angebotshäufigkeit	ECTS	SWS	Sprache
nur im Wintersemester	6.0	5.0	deutsch

Inhalte

- Elektrostatik, Kondensator
- Gleichstrom-Netzwerke, Widerstand
- Magnetisches Feld, (Selbst-)Induktivität
- InduktionsgesetzWechselstrom-Netzwerke
- Filter und Schwingkreise
- Leistung und Drehstrom
- Transformator, Gegeninduktivität
- Schaltvorgänge

Zusätzliche Angaben	
auch PO21	

Modulname:

Informatik

Modulname	Modulcode
Informatik	Ba I – C030
Modulverantwortliche/r	Fakultät
Prof. Dr. Roman Grothausmann	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang

Bachelor Ingenieurwissenschaften, Medizintechnik, Informatik und Robotik

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	I	Pflichtfach	6.0

Voraussetzungen laut Prüfungsordnung	
keine	

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
l.	LV Informatik	Pflichtfach	5.0	3∨ 0Ü 2L 0S 0P
Summe (Pflicht und Wahlpflicht)			5.0	180

Qualifikationsziele

Die Studierenden lernen:

- grundlegende Konzepte & Strukturen von Daten in der Informatik zu verstehen und zu interpretieren
- mit einem IDE (Editor, Interpreter bzw Präprozessor, Compiler, Debugger) und weiteren Programmierwerkzeugen (Versionsverwaltung) umzugehen
- Techniken der prozeduralen Programmierung selbständig auf Praktikumsaufgaben anzuwenden und erlerntes Wissen zu übertragen
- sich im Rahmen des Praktikums im Team zu organisieren, abzusprechen, auszutauschen und zu dokumentieren (git und GitLab)
- Standarddatentypen sowie Aufzählungen, Felder und Strukturen kennen und als Variablen (Zeiger), Konstanten zu verwenden und ein-/auszugeben
- Operatoren der Sprache anzuwenden und damit gültige Ausdrücke zu bilden
- Anweisungen zur Steuerung des Programmablaufs (z.B. Verzweigungen und Schleifen) zu gebrauchen
- Strukturierung von Programmen (z.B. Funktionen, Aufteilung auf mehrere Dateien) umzusetzen und Programmbibliotheken zu nutzen
- die Grundzüge der Speicherverwaltung kennen
- die Möglichkeiten und Grenzen der Rechnerarithmetik (z.B. Ganzzahl- und Gleitkommaarithmetik) zu bewerten (Genauigkeit, Überlauf)

Zu erbringende Prüfungsleistung / Studienleistung

K2 / LP

Modulname:

Informatik

Modulname	Modulcode		
Informatik	BA I - C030		
Veranstaltungsname	Veranstaltungscode		
Informatik	Vorlesung/Übung	BA I - C030-VI	
Lehrende/r	Fakultät	Arbeitsaufwand	
Diplom Tobias Bürman Prof. Dr. Roman Grothausmann	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 75 WS Eigenstudium: 105 WS	

Angebotshäufigkeit	ECTS	SWS	Sprache
nur im	6.0	5.0	deutsch
Wintersemester			

Inhalte

Einführung in die für Ingenieur*innen praktisch relevanten Aspekte der Informatik:

- I.Einführung:
- 1.1 Anwendungsbeispiele aus den Ingenieurwissenschaften
- 1.2 Aufbau und Arbeitsweise eines Computers
- 1.3 Versionsverwaltung von Dateien mit git 2. Daten (Darstellung und Verarbeitung):
- 2.1 Zahlensysteme und binäre Arithmetik (Darstellung von Zahlen, Umwandlung von Zahlen in verschiedene Darstellungssysteme)
- 2.2 Codierung (ASCII, Unicode)
- 3 Programmierung:
- 3.1 Datentypen und Variablen, Kontrollstrukturen, Funktionen, begleitendes Programmierpraktikum
- 3.2 Schrittweiser Aufbau und Verbesserung eines größeren Programms als Einstieg in die Softwareentwicklung im Team unter Verwendung von git und GitLab

Zusätzliche Angaben

auch PO21

Modulname:

Dynamik

Modulname	Modulcode
Dynamik	Ba I – C040
Modulverantwortliche/r	Fakultät
Prof. Dr. Christoph Gerhard	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang

Bachelor Ingenieurwissenschaften, Medizintechnik, Technische Informatik und Robotik

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	I	Pflichtfach	6.0

Voraussetzungen laut Prüfungsordnung	
keine	

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
I.	LV Dynamik	Pflichtfach	5.0	3V IÜ IL 0S 0P
Summe (Pflicht und Wahlpflicht)			5.0	180

Qualifikationsziele

Die Studierenden können

- physikalische Betrachtungen und Vorgehensweisen verstehen, wiedergeben und erläutern
- physikalische Sachverhalte analysieren und deren Wirkmechanismen abstrahieren
- selbstständig erlerntes Wissen auf theoretische und praktische Aufgabenstellungen übertragen, diese Analysieren und Lösungen berechnen
- physikalische Dimensionen sicher einordnen und bewerten

Zu erbringende Prüfungsleistung / Studienleistung

K2 / LP

Modulname:

Dynamik

Modulname				Modulcode		
Dynamik					BA I - C040	
Veranstaltungsname			Veranstaltungsart		Veranstaltungscode	
LV Dynamik		Vo	Vorlesung/Übung		BA I - C040-VI	
Lehrende/r		Fakultät			Arbeitsaufwand	
Prof. Dr. Christoph Gerhard Prof. Dr. Stephan Wieneke		Ingenieurwissenschaften und Gesundheit		schaften und	Präsenzstudium: 75 WS Eigenstudium: 105 WS	
Angebotshäufigkeit ECTS			SWS	Sprache		
nur im Wintersemester 6.0			5.0	deutsch		

Inhalte

- Physikalische Größen und EinheitenAllgemeine Kinematik, Dynamik, Translation, Rotation, Newtonsche Axiome
- Arbeit, Energie und Energieformen, Leistung, Impuls,

- Gravitation, Trägheit
 Mechanik des starren Körpers: Drehmoment und Drehimpuls,
 Dynamisches Grundgesetz, Massenträgheitsmoment, Drehimpuls

Zusätzliche Angaben	
auch PO21	

Modulname:

Projekt Junior

Modulname	Modulcode
Project Junior	Ba I – C050
Modulverantwortliche/r	Fakultät
Studiendekan*in	Ingenieurwissenschaften und Gesundheit

Dauer des Moduls Empf. Semester		Modultyp	ECTS
ein Semester	I	Pflichtfach	6.0

Voraussetzungen laut Prüfungsordnung	
keine	

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
I.	LV Projekt Junior	Präsenz Eigenstudium	2.0 2.0	90 90
Sum	 me (Pflicht und Wahlpflicht)		5.0	180

Qualifikationsziele

Fachkompetenz

- Die Studierenden k\u00f6nnen definierte ingenieurwissenschaftliche Problemstellungen erfassen / die erforderlichen Schritte f\u00fcr deren Bearbeitung definieren und Ihr Wissen auf die L\u00f6sung von Problemen abbilden.
- Die Studierenden können grundlegende manuelle und entwicklungstechnische Grundfertigkeiten an praktischen Aufgaben anwenden und fachbezogene Zusammenhänge zwischen den verschiedenen Ingenieursdisziplinen herstellen.

Methodenkompetenz

- Die Studierenden können laborbezogene Entwicklungs-, Mess- und Prüfverfahren zur Lösung von Problemstellungen und Absicherung der Ergebnisse anwenden.
- Personale und Soziale Kompetenz
- Die Studierenden übernehmen Verantwortung im Team, integrieren und tragen durch ihr Verhalten zur gemeinsamen Zielerreichung bei.

Übergreifende Handlungskompetenz

• Die Studierenden wenden ihr Fachwissen situationsgerecht an, analysieren praktische Probleme und bewerten die Anwendbarkeit theoretischer Konzepte.

Zu erbringende Prüfungsleistung / Studienleistung

PA / PP

Modulname:

Projekt Junior

Modulname					Modulcode	
Projekt Junior					BA I - C050	
Veranstaltungsname		Veranstaltungsart		rt	Veranstaltungscode	
Projekt Junior		Projekt			BA I - C050-VI	
Lehrende/r		Fakultät			Arbeitsaufwand	
Studiendekan*in		Ingenieurwissenschaften und		schaften und	Präsenzstudium: 90 WS	
		Ge	sundheit		Eigenstudium: 90 WS	
Angebotshäufigkeit	ECTS		SWS	Sprache		
Jedes Semester	6.0		5.0	deutsch		

Inhalte

In der ersten Semesterhälfte erhalten die Studierenden eine Einführung in die Projektarbeit. Die darin erworbenen Kenntnisse werden in der zweiten Semesterhälfte im Rahmen eines Projektes in ausgewählten Grundlagenbereichen aus der Elektrotechnik, der Informatik und der Dynamik/Statik vertieft.

Die Studierenden erhalten eine konkrete Aufgabenstellung zur Umsetzung ingenieurwissenschaftlicher Methoden oder Erkenntnisse in die Praxis, oder zur Lösung eines Praxisproblems mit Hilfe wissenschaftlicher Methoden. Der Stand der Bearbeitung wird in regelmäßigen Abständen präsentiert und mit den Prüfern diskutiert.

- Teamarbeit
- Projektplanung
- Anwendung erlernter Kenntnisse und Methoden auf die spezielle Problemstellung
- Erstellung technischer Berichte
- Präsentation von Projektergebnissen

Zusätzliche Angaben auch PO21

Bachelor Ingenieurwissenschaften

Rechnernetze und Betriebssysteme

Modulname:

Modulname	Modulcode
Rechnernetze und Betriebssysteme	BA 2 – B120
Modulverantwortliche/r	Fakultät
Prof. Dr. Thomas Linkugel	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang

Bachelor Ingenieurwissenschaften, Medizintechnik, Technische Informatik und Robotik

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	2	Pflichtfach	6.0

Voraussetzungen laut Prüfungsordnung
keine

Zugehörige Lehrveranstaltungen:

	<u> </u>			
Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
l.	LV - Rechnernetze und Betriebssysteme	Pflichtfach	5.0	3V IÜ 0L 0S IP
Sumi	5.0	180		

Qualifikationsziele

Die Studierenden können

- auf der Basis ihrer grundlegenden Kenntnisse über Rechnernetze, Betriebssysteme und Programmierung die Struktur der Vernetzung moderner technischer Systeme (Hard-Software, Internet of Things, Industrie 4.0,...) ableiten.
- diese vernetzten Systeme auf Fallbeispiele anwenden.
- im Rahmen des Praktikums eigenständig Systeme entwerfen und implementieren.
- sich in Arbeitsgruppen organisieren, ihre Arbeitsergebnisse darstellen und kritisch diskutieren.

Zu erbringende Prüfungsleistung / Studienleistung

K2 oder PA[50%]+R[50%] / LP

Bachelor Ingenieurwissenschaften

Rechnernetze und Betriebssysteme

Modulname:

Modulname					Modulcode	
Rechnernetze und Betriebssysteme					BA 2 – B120	
Veranstaltungsname		Veranstaltungsart		rt	Veranstaltungscode	
Rechnernetze und Betriebssystem		Vorlesung/Übung		ng	BA 2 – BI20-VI	
Lehrende/r		Fakultät			Arbeitsaufwand	
Prof. Dr. Thomas Linkugel		Ingenieurwissenschaften und Gesundheit		schaften und	Präsenzstudium: 75 WS Eigenstudium: 105 WS	
Angebotshäufigkeit	ECTS	-	SWS	Sprache		
Nur im Sommersemester	6.0		5.0	deutsch	7	

Inhalte

- I. Wiederholung und Vertiefung des OSI-Referenzmodells am Beispiel von TCPIP
- 2. Linux und Derivate wie mobile Betriebssysteme
- 3. Verteilte Systeme
- 4. Virtualisierung und Cloud-Computing
- 5. IT Sicherheit
- 6. Internet of Things und Industrie 4.0 Grundlagen und Anwendungen anhand von Beispielen aus der Praxis

Zusätzliche Angaben

auch PO21, enlischer Titel "Computer Networks and Operating Systems"

Vertiefung Informatik

Modulname:

Modulname	Modulcode
Vertiefung Informatik - Objektorientierte Programmierung	BA 2 – B130
Modulverantwortliche/r	Fakultät
Prof. Dr. Tobias Sprodowski	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang

Bachelor Ingenieurwissenschaften, Medizintechnik, Technische Informatik und Robotik

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	2	Pflichtfach	6.0

Voraussetzungen laut Prüfungsordnung	
keine	

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
l.	LV – Vertiefung Informatik	Pflichtfach	5.0	3∨ 0Ü 2L 0S 0P
Summe (Pflicht und Wahlpflicht)				180

Qualifikationsziele

- Die Studierenden können auf der Basis ihrer vertieften Programmierkenntnisse
- für ein gestelltes Problem Anforderungen ableiten,
- aus den Anforderungen Use-Cases aufstellen und Objekte bzw. Entitäten identifizieren,
- in einer Programmiersprache objektorientierte Programme schreiben,
- sich in Organisations- und Programmstrukturen eigenverantwortlich bewegen,
- Tests für Methoden und Klassen implementieren,
- Kommunikationsstrukturen zwischen Objekten implementieren,
- UI-Frameworks beurteilen und grundlegende UI-Interfaces implementieren,
- im Ansatz mit fortgeschrittenen Programmierfeatures arbeiten.

Zu erbringende Prüfungsleistung / Studienleistung

K2 (PL) / LP (SL)

Modulname:

Modulname		Modulcode				
Vertiefung Informatik					BA 2 – B130	
Veranstaltungsname		Veranstaltungsart		ırt	Veranstaltungscode	
Vertiefung Informatik		Vorlesung/Übung		ng	BA 2 – B130-VI	
Lehrende/r		Fakultät			Arbeitsaufwand	
Prof. Dr. Tobias		Ingenieurwissenschaften und		nschaften und	Präsenzstudium: 75 WS	
Sprodowski		Ge	sundheit		Eigenstudium: 105 WS	
Angebotshäufigkeit	ECTS		SWS	Sprache		
Nur im Sommersemester	6.0		5.0	deutsch		

Inhalte

1. Identifizierung von Anforderungen aus einer gegebenen

Problemstellung

- 2. Erstellung und Priorisierung von Use-Cases
- 3. Objekt-orientiert programmieren
 - 3.1 Kapselung und Interfaces
 - 3.2 Klassen-Design und Open-Closed-Prinzip
 - 3.3 Klassenmethoden
 - 3.4 Vererbung
 - 3.5 Abstrakte Klassen und Polymorphie
 - 3.6 Generische Klassen und Templates
 - 3.7 Kohäsion und Kopplung
 - 3.8 APIs
 - 3.9 Programmierrichtlinien good and bad practices
 - 3.10 Code-Dokumentation
- 4. Events und Signals
 - 4.1 Event-Loop
 - 4.2 Exceptions
 - 4.3 Signals und Event-Handling
 - 4.4 I/O-Handling
- 5. UI-Programmierung
 - 5.1 Frameworks Vor- und Nachteile
 - 5.2 Code-generated Templates
- 6. Tests
 - 6.1 Unit-Tests
 - 6.2 Component-Tests
 - 6.3 Regression-/Integrations-Tests
 - 6.4 Einführung in CI/CD
- 7. Fortgeschritttene Konzepte

Zusätzliche Angaben

auch PO21

Modulname: Grundlagen Elektronik

Modulname	Modulcode
Grundlagen Elektronik	Ba 2 – B220
Modulverantwortliche/r	Fakultät
Prof. DrIng. Steffen Kaufmann	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang

Bachelor Ingenieurwissenschaften, Medizintechnik, Informatik und Robotik

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	2	Pflichtfach	6.0

Voraussetzungen laut Prüfungsordnung

Integral- und Differentialrechnung, Elektrotechnik

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
l.	LV Grundlagen der Elektronik	Pflichtfach	5.0	3V IÜ IL 0S 0P
Sum	Summe (Pflicht und Wahlpflicht)			

Qualifikationsziele

Die Studierenden benennen und erklären die Funktionsprinzipien grundlegender elektronischer und halbleiterbasierter Bauelemente. Sie verstehen deren Wirkzusammenhänge und analysieren einfache elektronische Schaltungen unter Anwendung grundlegender Analyse- und Dimensionierungsmethoden. Dabei wenden sie geeignete Verfahren zur Schaltungsbewertung an und setzen elektronische Komponenten sowie Messgeräte sicher und zielgerichtet im Labor ein.

Zu erbringende Prüfungsleistung / Studienleistung

K2/LP

Modulname: Grundlagen Elektronik

Modulname			Modulcode			
Grundlagen Elektronik			BA 2 – B220			
Veranstaltungsname		Veranstaltungsart		rt	Veranstaltungscode	
Grundlagen Elektronik		Vorlesung/Übung		ng .	BA 2 – B220-VI	
Lehrende/r		Fakultät			Arbeitsaufwand	
Prof. DrIng. Steffen Ingenieurwis Kaufmann Gesundheit			schaften und	Präsenzstudium: 75 WS Eigenstudium: 105 WS		
Angebotshäufigkeit	ECTS	ECTS SWS		Sprache		
Nur im Sommersemester	6.0		5.0	deutsch		

Inhalte

- Passive Bauelemente (u. a. Widerstände, Kondensatoren, Spulen, Schwingquarze)
- Grundlagen der Halbleiterphysik: Bändermodell, Halbleitermaterialien, Ladungsträger und Ströme in Halbleitern
- Halbleiterbauelemente (u. a. Dioden, Transistoren, Thyristoren, Optokoppler, Operationsverstärker, digital und analog ICs)
- Grundschaltungen der Elektronik (Transistorverstärkergrundschaltungen, idealer OP-Verstärker, Instrumentenverstärker, Stromquellen, einfache Filter)
- Kleinsignalverhalten (Linearisierung, Ersatzschaltbilder, Trennung von Gleich- und Wechselanteil)

Zusätzliche Angaben	
auch PO21	

Modulname: Technische Informatik

Modulname	Modulcode
Technische Informatik	Ba 2 – B230
Modulverantwortliche/r	Fakultät
Prof. Dr. Tobias Sprodowski	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang

Bachelor Ingenieurwissenschaften, Technische Informatik und Robotik

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	5	Pflichtfach	6.0

Voraussetzungen laut Prüfungsordnung	

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
I.	LV Technische Informatik	Pflichtfach	5.0	3∨ 0Ü 2L 0S 0P
Sum	5.0	180		

Qualifikationsziele

Die Studierenden sind in der Lage

- elektrotechnische Grundlagen zum Aufbau von integrierten Schaltkreisen wiederzugeben,
- einfache Digitalschaltungen zu konstruieren,
- Boolsche Gleichungen aufzustellen und zu minimieren,
- Schaltnetze zu konstruieren und zu simulieren,
- grundlegende Konzepte zum Aufbau und Programmierung des Rechners anzuwenden,
- Speicherhierarchien und deren Ansteuerung zu beherrschen,
- einen Mikrocontroller zu programmieren.

Zu erbringende Prüfungsleistung / Studienleistung

K2(PL) / LP (SL)

Modulname: Technische Informatik

Modulname				Modulcode		
Technische Informatik			BA 2 – B230			
Veranstaltungsname			Veranstaltungsart		Veranstaltungscode	
Technische Informatik		Vo	Vorlesung/Labor		BA 2 – B230-VI	
Lehrende/r		Fakultät			Arbeitsaufwand	
Prof. Dr. Tobias Sprodowski		Ingenieurwissenschaften und		schaften und		
		Gesundheit			Eigenstudium: 105 WS	
Angebotshäufigkeit	ECTS		SWS	Sprache		
Nur im Sommersemester	6.0		5.0	deutsch		

Inhalte

- Physikalische und elektrotechnische Grundlagen
 - Transistoren
 - Halbleitertechnologie
- Schaltnetze
 - o Boolsche Algebra
 - o Darstellung boolscher Funktionen und Normalformen
 - Minimierung nach KV-Diagramm, Quine-Mc-Clusky
 - Beispiele anhand Addierer, Multiplexer, Demultiplexer, ALU
- Speicherbausteine
 - o Flipflops
 - o RAM
 - o ROM, PROM, EEPROM
- Von-Neumann-Rechner
 - o Aufbau
 - Komponenten
 - Peripherie
 - o Programmierung
 - o Andere Architekturen
- Speicherarchitekturen
 - o Hardware (Speicherhierarchien)
 - o Software (Stack, Heap, DATA, TEXT)
- Mikrocontroller
- Ausblicke, Trends

Zusätzliche Angaben
auch PO21

Modulname: Konstruktion

Modulname	Modulcode
Konstruktion	Ba 2 – B330
Modulverantwortliche/r	Fakultät
Prof. Dr. Christopher Frey	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang

Bachelor Ingenieurwissenschaften, Technische Informatik und Robotik

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	2	Pflichtfach	6.0

Voraussetzungen laut Prüfungsordnung	
keine	

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
I.	LV Konstruktion	Pflichtfach	4.0	2V IÜ 2L 0S 0P
Sum	4.0	180		

Qualifikationsziele

Die Studierenden können

- unter Berücksichtigung der technischen Normen einfache Konstruktionen lesen
- einfache Konstruktionen in Skizzen händisch beschreiben und selbst erstellen
- fertigungs- und funktionsgerechte Kriterien definieren
- die CAD Software Inventor logisch erfassen
- einen konstruktiven Entwurf auf Basis eines Lastenheftes anfertigen
- in einem Team gemeinsam einen Entwurf erarbeiten

Zu erbringende Prüfungsleistung / Studienleistung

K2 / LP

Modulname: Konstruktion

Modulname					Modulcode	
Konstruktion			BA 2 – B330			
Veranstaltungsname Veranstaltungsart			art	Veranstaltungscode		
Konstruktion		Ser	Seminar		BA 2 – A330-VI	
Lehrende/r		Fak	Fakultät		Arbeitsaufwand	
Prof. Dr. Christopher Frey		Ing	Ingenieurwissenschaften und		Präsenzstudium: 60 WS	
		Gesundheit			Eigenstudium: 120 WS	
Angebotshäufigkeit	ECTS	SWS Sprache		Sprache		
Nur im Sommersemester	6.0		4.0	deutsch		

Angebotshäufigkeit	ECTS	SWS	Sprache
Nur im Sommersemester	6.0	4.0	deutsch

Inhalte

Grundlagen technisches Zeichnen

Normgerechtes Darstellen und Bemaßen

Projektionen, isometrische Darstellung

Tolerierung und Toleranzrechnung Passungen

Normgerechte Darstellung von Oberflächen

Gestaltabweichung

Umgang mit Normteilen

CAD-Labor

Grundfunktionen: Extrusion, Rotation, Schnitte Editierfunktionen

Ableiten von technischen Zeichnungen

Zusammenbauten

• Erstellen eines eigenen Entwurfes auf Basis eines Lastenheftes

Zusätzliche Angaben	

Werkstoffkunde und Chemie

Modulname:

Modulname	Modulcode
Werkstoffkunde und Chemie	BA 2 – B420
Modulverantwortliche/r	Fakultät
Prof. Dr. rer. nat. Jan Rossel, Prof. Dr. rer. nat. Salvatore Sternkopf	Ingenieurwissenschaften und Gesundheit

	Zuordnung zum Studiengang
ſ	Bachelor Ingenieurwissenschaften, Medizintechnik, Orthobionik

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	2	Pflichtfach	6.0

Voraussetzungen laut Prüfungsordnung	
keine	

Zugehörige Lehrveranstaltungen:

-		<u> </u>			
	Nr.	Nr. Veranstaltungsname Belegur		SWS	Workload
	l.	LV Werkstoffkunde und Chemie Pflichtfach			3V IÜ IL 0S 0P
ı	Sumi	me (Pflicht und Wahlpflicht)	5.0	180	

Qualifikationsziele

Die Studierenden können

- den Aufbau chemischer Elemente und Verbindungen sowie deren Wechselwirkungskräfte und chemische Reaktionen beschreiben und erläutern
- die Bedeutung chemischer Abläufe in Technik und Umwelt erkennen und krit. diskutieren
- Chemikalien und ihr spezifisches Gefahrenpotenzial differenziert einschätzen und angemessen damit umgehen
- ihre Kenntnisse über werkstoffwissenschaftliche Grundlagen auf die Anwendungen in Konstruktion und Fertigung übertragen sowie deren Eignung für verschiedene Einsatzbereiche begründet voraussagen und entscheiden
- Prüfverfahren zur Beurteilung des Werkstoffverhaltens erläutern, für die Praxis auswählen, systematisch planen und umsetzen sowie Arbeitsergebnisse evaluieren
- sich in Arbeitsgruppen organisieren, Experimente selbstständig in zeitlich angemessenem Rahmen durchführen sowie Ergebnisse diskutieren, beurteilen, beschreiben

Zu erbringende Prüfungsleistung / Studienleistung

K2 / LP

Werkstoffkunde und Chemie

Modulname:

Modulname	Modulcode		
Werkstoffkunde und Chemie	BA 2 – B420		
Veranstaltungsname	eranstaltungsname Veranstaltungsart		
Werkstoffkunde und Chemie	Vorlesung/Übung	BA 2 – B420-VI	
Lehrende/r	Fakultät	Arbeitsaufwand	
Prof. Dr. rer. nat. Jan Rossel Prof. Dr. rer. nat. Salvatore Sternkopf	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 75 WS	
·		Eigenstudium: 105 WS	

Angebotshäufigkeit	ECTS	SWS	Sprache
Jedes Semester	6.0	5.0	deutsch

Inhalte

- 1. Grundlagen der Metall- und Legierungskunde (WSK)
- 2. Mikrogefüge und Struktur der Werkstoffe (WSK)
- 3. Korrosion und Korrosionsschutz (WSK)
- 4. Zustandsänderungen und Phasenumwandlungen (WSK)
- 5. Einwirkungen von Wärmebehandlungen und Fertigungsprozessen auf die Werkstoffeigenschaften (WSK)
- 6. Eisenwerkstoffe, Nichteisenmetalle, Keramiken, Kunststoffe, Glas und FKVs (WSK)
- 7. Anwendungsbeispiele für Konstruktions- und Funktionswerkstoffe (WSK)
- 8. Atommodelle, chemische Bindungen, Arten chemischer Reaktionen (CHE)
- 9. Stöchiometrie, Konzentrationsmaße (CHE)
- 10. Gleichgewichtszustände (CHE)
- 11. Werkstoffprüfung & chemische Analytik (CHE)
- 12. Schadensanalyse (CHE)
- 13. Praktikum zur Charakterisierung und Prüfung von Werkstoffen (WSKCHE)
- 14. Experimente mit verschiedenen Methoden und zu Reaktionsabläufen (CHE)

Zusätzliche Angaben

auch PO21, englischer Titel "Materials Science and Chemistry"

Grundlagen der Plasmatechnik

Modulname:

Bachelor Ingenieurwissenschaften

Modulname	Modulcode		
Grundlagen der Plasmatechnik	BA 2 – B630		
Modulverantwortliche/r	Fakultät		
Prof. Dr. Christoph Gerhard	Ingenieurwissenschaften und Gesundheit		

Zuordnung zum Studiengang
Bachelor Ingenieurwissenschaften

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	2	Pflichtfach	6.0

Voraussetzungen laut Prüfungsordnung
Dynamik, Elektrotechnik

Zugehörige Lehrveranstaltungen:

Nr	· Veranstaltungsname	ngsname Belegungstyp		Workload
I.	LV Grundlagen der Plasmatechnik Pflichtfach			4V IÜ 0L 0S IP
Sun	nme (Pflicht und Wahlpflicht)	5.0	180	

Qualifikationsziele

Die Studierenden sind in der Lage

- die Typen und Eigenschaften technischer Plasmen zu benennen und anhand von Fallbeispielen zu bewerten.
- die Grundlagen zur Beschaffenheit von Plasmen zu beschreiben.
- die physikalischen und chemischen Prozesse von Plasmen anzuwenden.
- mit Hilfe der erlangten Kenntnisse zu verschiedenen Plasmatypen deren spezifischen Eigenschaften und Einsatzmöglichkeiten zu evaluieren.
- Experimentelle Aufbauten für Plasmaquellen zu entwerfen.
- anhand von Fallbeispielen die vermittelten theoretischen Grundlagen auf praktische Anwendungen zu übertragen um diese zu verinnerlichen.

Zu erbringende Prüfungsleistung / Studienleistung

K2, E, R, P

Grundlagen der Plasmatechnik

Modulname:

Bachelor Ingenieurwissenschaften

Modulname				Modulcode		
Grundlagen der Plasmatechnik					BA 2 – B630	
Veranstaltungsname			Veranstaltungsart		Veranstaltungscode	
Grundlagen der Plasmatechnik		Vorlesung/Übung		ıg	BA 2 – B630-VI	
Lehrende/r		Fakultät			Arbeitsaufwand	
Prof. Dr. Christoph Gerhard		_	enieurwissen sundheit	schaften und	Präsenzstudium: 75 WS Eigenstudium: 105 WS	
Angebotshäufigkeit	ECTS		SWS	Sprache		
Jedes Semester	6.0		5.0	deutsch		

Inhalte

Die Vorlesung beinhaltet folgende Themen:

- Natürliche Plasmen (Interstellare und atmosphärische Plasmen, Historie der Plasmaphysik)
- Charakteristische Plasmaparameter (Quasineutralität, Ambipolarität, Plasmaexpansion, Debye-Größen, Plasmatemperaturen, Plasmateilchen, Teilchendichten, Ionisationsgrad, Plasmafrequenz)
- Mechanismen in idealen Plasmen (Teilchen- und Ladungstransport, Drift-Diffusionsnäherung, Diffusion, Ionisation, Anregung, Plasma-Wand-Wechselwirkungen)
- Plasmatypen und -kategorien (Townsendentladungen, Gasentladungsplasmen, Gleichgewichtsund Nichtgleichgewichtsplasmen, Paschen-Gesetz, Plasmazonen)
- Plasmaentladungsarten und Plasmaquellen (Glimmentladungen, Bogenentladungen, Dielektrisch behinderte Entladungen)

Zusätzliche Angaben

auch PO21, englischer Titel "Fundamentals of plasma technology"

Bachelor Ingenieurwissenschaften

Modulname: Schwingungen / Wellen /

Thermodynamik

Modulname	Modulcode
Schwingungen / Wellen / Thermodynamik	BA 2 – B730
Modulverantwortliche/r	Fakultät
Prof. Dr. Andrea Koch	Ingenieurwissenschaften und Gesundheit

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	2	Pflichtfach	6.0

Voraussetzungen laut Prüfungsordnung	
Dynamik, Differential- und Integralrechnung	

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
l.	LV Schwingungen / Wellen / Thermodynamik	Pflichtfach	5.0	3V IÜ 0L 0S IP
Summe (Pflicht und Wahlpflicht)			5.0	180

Qualifikationsziele

Die Studierenden verstehen grundlegende Konzepte zur Beschreibung schwingender technischer Systeme und Wellenphänomene. Sie sind vertraut mit Grundlagen der Thermodynamik zur Beschreibung von Zustandsänderungen idealer Gase.

Sie können die erlernten Vorgehensweisen auf praktische Beispiele aus dem Bereich der Schwingungssysteme und die Hauptsätze der Thermodynamik auf ausgewählte technische Probleme anwenden.

Die Studierenden sind in der Lage sich in Arbeitsgruppen zu organisieren, gegebene Problemstellungen zu analysieren und strukturiert zu lösen.

Zu erbringende Prüfungsleistung / Studienleistung

K2 / LP

Schwingungen / Wellen /
Thermodynamik

Modulname			Modulcode			
Schwingungen / Wellen / Thermodynamik				BA 2 – B730		
Veranstaltungsname Verans		ranstaltungsa	art Veranstaltungscode			
Schwingungen / Wellen / Thermodynamik		Vorlesung/Übung/Praktikum		ng/Praktikum	BA 2 – B730-VI	
Lehrende/r		Fakultät			Arbeitsaufwand	
Prof. Dr. Andrea Koch		Ingenieurwissenschaften und Gesundheit		schaften und	Präsenzstudium: 75 WS Eigenstudium: 105 WS	
Angebotshäufigkeit	ECTS		SWS	Sprache		
nur im Sommersemester	6.0		5.0	deutsch		

Inhalte

Vorlesung:

- Harmonische Schwingungen frei, gedämpft und erzwungen
- Einführung in Wellenphänomene anhand von Wellen auf einem Seil
- Grundlagen der Zustandsänderungen idealer Gase
- Hauptsätze der Thermodynamik mit ausgewählten Anwendungen

Praktikum:

ausgewählte physikalische Grundlagenexperimente

Zusätzliche Angaben	
auch PO21	

Bachelor Ingenieurwissenschaften

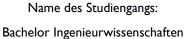
Modulname	Modulcode
Mathematik: Analytische Geometrie und lineare Algebra (AGLA)	BA 2 - C010
Modulverantwortliche/r	Fakultät
Studiendekan*in	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang

Bachelor Ingenieurwissenschaften, Medizintechnik, Informatik und Robotik

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	2	Pflichtfach	6.0

Voraussetzungen laut Prüfungsordnung	
keine	


Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
I.	LV Mathematik – Analytische Geometrie und lineare Algebra (AGLA)	Pflichtfach	6.0	4V 2Ü 0L 0S 0P
Summe (Pflicht und Wahlpflicht)			6.0	180

Qualifikationsziele

- I. **Wissen**: Die Studierenden können grundlegende mathematische Begriffe und Modelle aus den Bereichen der Geometrie (Geraden, Ebenen, Vektoren), der linearen Algebra (Matrizen und lineare Gleichungssysteme), und komplexen Zahlen benennen und beschreiben.
- 2. **Verstehen**: Die Studierenden können
 - bezogen auf die Lehrinhalte Modelle in Naturwissenschaft und Technik verstehen,
 - Skalar-, Vektor-, Spaltprodukte unterscheiden,
 - mit komplexen Zahlen arbeiten,
 - mit linearen Abbildungen und Matrizen umgehen.
- 3. Anwenden: Die Studierenden können
 - Geraden- und Ebenengleichungen erstellen,
 - lineare Gleichungssysteme lösen,
 - Eigenwertprobleme lösen.
- 4. **Analysieren**: Die Studierenden können mathematische Modelle verwenden, um spezifische naturwissenschaftlich-technische Probleme zu analysieren.
- 5. **Synthetisieren**: Die Studierenden können sich selbständig in Lerngruppen organisieren und eigene Lernprozesse in der Diskussion zu überprüfen. Sie sind in der Lage, an der Wissensaneignung in seminaristischen Vorlesungen aktiv mitzuwirken, Lösungsvorschläge für Aufgaben in Lerngruppen zu erarbeiten und diese zu präsentieren.

Zu erbringende Prüfungsleistung

AGLA

Modulname	Modulcode		
Mathematik: Analytische Geometrie un	BA 2 - C010		
Veranstaltungsname	Veranstaltungscode		
Analytische Geometrie und lineare Algebra (AGLA) Vorlesung/Übung		BA 2 - C010-VI	
Lehrende/r	Fakultät	Arbeitsaufwand	
Studiendekan*in	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 90 WS Eigenstudium: 90 WS	

K2 oder semesterbegleitende K1[50%] + K1[50%]

Angebotshäufigkeit	ECTS	SWS	Sprache
nur im Sommersemester	6.0	6.0	deutsch

Inhalte

- Komplexe Zahlen
 - Rechnen mit komplexen Zahlen
 - · kartesische Darstellung, Polar- und Exponentialdarstellung
 - komplexe Wurzeln
- Vektoralgebra
 - Skalar-, Vektor-, Spatprodukt, Betrag
 - Geraden und Ebenen
- Lineare Abbildungen und Matrizen
- Lösen linearer Gleichungssysteme
 - Gauß-Algorithmus
 - Lösbarkeit linearer Gleichungssysteme
- Eigenschaften linearer Abbildungen
 - Inverse Matrizen
 - Eigenwerte und Eigenvektoren
- Fourier-Reihen, Fourieranalyse

Zusätzliche Angaben	
auch PO21	

Modulname: Vertiefung Informatik

Modulname	Modulcode
Statik	BA 2 – C040
Modulverantwortliche/r	Fakultät
Prof. Dr. Manfred Bußmann	Ingenieurwissenschaften und Gesundheit

Zuord	lnung zum	Studiengai	ng

Bachelor Ingenieurwissenschaften, Medizintechnik

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	2	Pflichtfach	6.0

Voraussetzungen laut Prüfungsordnung keine

Zugehörige Lehrveranstaltungen:

	Nr.	Nr. Veranstaltungsname Belegungstyp		SWS	Workload
	I. LV - Statik		Pflichtfach	5.0	3∨ 2Ü 0L 0S 0P
Summe (Pflicht und Wahlpflicht)			5.0	180	

Qualifikationsziele

Die Studierenden können:

- die grundlegenden Methoden der Statik zur Berechnung mechanischer Bauteile und Strukturen anwenden.
- eine Konstruktion und ihr Anforderungsprofil verknüpfen.
- geeignete Berechnungsverfahren selektieren und bewerten.
- sich eigenverantwortlich und systematisch Fachliteratur erschließen und ihre Lernprozesse kritisch, fachlich überprüfen.

Zu erbringende Prüfungsleistung / Studienleistung

K2

Modulname: Vertiefung Informatik

Modulname			Modulcode			
Statik			BA 2 – C040			
Veranstaltungsname			Veranstaltungsart		Veranstaltungscode	
Statik		Vorlesung/Übung		ng	BA 2 – C040-VI	
Lehrende/r		Fakultät			Arbeitsaufwand	
Prof. Dr. Manfred Bussmann		Ing	Ingenieurwissenschaften und		Präsenzstudium: 75 WS	
			Gesundheit		Eigenstudium: 105 WS	
Angebotshäufigkeit	ECTS		SWS	Sprache		
Jedes Semester	6.0		5.0	deutsch		

Inhalte

Statik in der Ebene und im Raum:

- Gleichgewichtsbedingungen, statische Bestimmtheit.Belastungsresultierende, Lagerreaktionen, Seileckverfahren
- Flächen- und Massenschwerpunkte
- Reibung
- Strukturbelastungen (Kräfte, Momente, Streckenlasten)
- Strukturbeanspruchungen (innere Schnittgrößen N(x), Q(x), M(x)) Gerber-Träger
- Stabwerke (Rittersches Schnittverfahren)

Zusätzliche Angaben	
auch PO21	

Modulname: Projekt Senior

Modulname	Modulcode
Project Junior	Ba 2 – C050
Modulverantwortliche/r	Fakultät
Studiendekan*in	Ingenieurwissenschaften und Gesundheit

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	2	Pflichtfach	6.0

Voraussetzungen laut Prüfungsordnung	
Projekt Junior, 60% bestandene Module aus 1. Semester	

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
1.	LV Projekt Senior	Präsenz Eigenstudium	1.0 5.0	30 150
	(DG: 14 1)W 11 G: 14)	Eigenstudium		
Summe (Pflicht und Wahlpflicht)			5.0	180

Qualifikationsziele

Fachkompetenz

- Die Studierenden erfassen industrielle Problemstellungen in ihrem Kontext und in angemessener Komplexität entsprechend ihres Studienfortschritts. Sie analysieren kritisch, welche Einflussfaktoren zur Lösung des Problems beachtet werden müssen und beurteilen, inwiefern einzelne theoretische Modelle einen Beitrag zur Lösung des Problems leisten können.
- Die Studierenden kennen die zentralen manuellen und entwicklungstechnischen Grundfertigkeiten der jeweiligen Majors, sie können diese an praktischen Aufgaben anwenden und haben deren Bedeutung für die Prozesse in Unternehmen erfasst.
- Die Studierenden können grundsätzlich fachliche Problemstellungen des jeweiligen Majors beschreiben und fachbezogene Zusammenhänge erläutern

Methodenkompetenz

 Absolventinnen und Absolventen kennen übliche Vorgehensweisen der industriellen Praxis und können diese selbstständig umsetzen. Dabei bauen sie auf ihr theoretisches Wissen sowie ihre Berufserfahrung auf.

Bachelor Ingenieurwissenschaften

Modulname:

Projekt Senior

Personale und Soziale Kompetenz

Die Relevanz von Personaler und Sozialer Kompetenz ist den Studierenden für den reibungslosen Ablauf von industriellen Prozessen bewusst und sie können eigene Stärken und
Schwächen benennen. Den Studierenden gelingt es, aus Erfahrungen zu lernen, sie übernehmen Verantwortung für die übertragene Aufgaben, mit denen sie sich auch persönlich
identifizieren. Die Studierenden übernehmen Verantwortung im Team, integrieren und tragen
durch ihr Verhalten zur gemeinsamen Zielerreichung bei.

Übergreifende Handlungskompetenz

- Die Studierenden zeigen Handlungskompetenz, indem sie ihr theoretisches Fachwissen nutzen, um in praktischen Situationen angemessen, authentisch und erfolgreich zu agieren. Dazu gehören auch das eigenständige kritische Beobachten, das systematische Suchen alternativer Lösungsansätze sowie eine erste Einschätzung der Anwendbarkeit von Theorien für Praxis.
- Durch Unterstützung von Senior Projects oder weiterer Projekte aus niedrigeren Semestern vermitteln sie erworbene Kompetenzen weiter.

Zu erbringende Prüfungsleistung / Studienleistung

PA / PP

Modulname:

Projekt Senior

Modulname				Modulcode			
Projekt Senior				BA 2 - C050			
Veranstaltungsname			Veranstaltungsart		Veranstaltungscode		
Projekt Junior		Projekt			BA 2 - C050-VI		
Lehrende/r		Fakultät			Arbeitsaufwand		
Studiendekan*in		Ingenieurwissenschaften und		schaften und	Präsenzstudium: 30 WS		
		Gesundheit			Eigenstudium: 150 WS		
Angebotshäufigkeit	ECTS		SWS	Sprache			
Jedes Semester	6.0		5.0	deutsch			

Inhalte

Die Studierenden erhalten eine konkrete Aufgabenstellung zur Umsetzung ingenieurswissenschaftlicher Methoden oder Erkenntnisse in die Praxis, oder zur Lösung eines Praxisproblems mit Hilfe wissenschaftlicher Methoden. Der Stand der Bearbeitung wird in regelmäßigen Abständen präsentiert und mit den Prüfern diskutiert.

- Teambuilding
- Prozessdefinition
- Definition des Untersuchungsbereichs
- Bestimmung der Durchführbarkeit
- Projektplanung und Prozessmanagement
- Literatur- und Patentrecherche
- Festlegung der entwicklungstechnischen Vorgehensweise
- Anwendung erlernter Kenntnisse und Methoden auf die spezielle Problemstellung
- Erstellung technischer Berichte und wissenschaftlicher Publikationen
- Präsentation von Projektergebnissen

Zusätzliche Angaben

auch PO21

Bachelor Ingenieurwissenschaften Algorithmen und Datenstrukturen

Modulname:

Modulname	Modulcode
Algorithmen und Datenstrukturen	Ba 3 – B120
Modulverantwortliche/r	Fakultät
Prof. Dr. Tobias Sprodowski	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang

Bachelor Ingenieurwissenschaften, Technische Informatik und Robotik

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	3	Pflichtfach	6.0

Voraussetzungen laut Prüfungsordnung		
keine		

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
I.	LV Algorithmen und Datenstrukturen	Präsenz	4.0	2V 0Ü 0L 0S 2P
Sum	4.0	180		

Qualifikationsziele

- Die Studierenden sind in der Lage, in der Softwareentwicklung
- die Eignung eines Algorithmus' für eine gegebene Problemstellung einzuschätzen,
 - die Komplexität eines Algorithmus' einzuordnen und zu beurteilen,
- Datenstrukturen unter Berücksichtigung des Anwendungsaspekts und der Programmiersprache auszuwählen,
- bei der Auswahl der Algorithmen und Datenstrukturen die Effizienz und Wartbarkeit der Programme sowie die Entwicklungszeit zu berücksichtigen,
- diese Kenntnisse bei der Implementierung mit Hilfe von Standardbibliotheken der genutzten Programmiersprache umzusetzen.

Zu erbringende Prüfungsleistung / Studienleistung

K2 (PL), LP (SL)

Bachelor Ingenieurwissenschaften

Algorithmen und Datenstrukturen

Modulname:

Modulname			Modulcode			
Regelungstechnik			BA 3 – B120			
Veranstaltungsname Veranstaltungsar			rt	Veranstaltungscode		
Algorithmen und Datenstru	kturen	Projekt			BA31 – B120-VI	
Lehrende/r Fak		Fakultät		Arbeitsaufwand		
Prof. Dr. Tobias Sprodowski		Ing	Ingenieurwissenschaften und		Präsenzstudium: 60 WS	
		Gesundheit			Eigenstudium: 120 WS	
Angebotshäufigkeit	ECTS	SWS Sprache		Sprache		
Nur im Wintersemester	6.0		4.0	deutsch		

Inhalte

- I. Lineare Datenstrukturen
 - I. Arrays, Listen, Vektoren, ...
 - 2. Queues, Deques, Stacks, Sets, Maps, ...
- 2. Algorithmen und Komplexitätstheorie
 - I. Landau-Notation
 - 2. Analyse und Bestimmung von Laufzeiten
 - 3. Entwurfsparadigmen
- 3. Nichtlineare Datenstrukturen
 - I. Bäume
 - 2. Binärbäume
 - 3. Balancierte Bäume (AVL-Bäume, RB-Bäume, B-Bäume)
- 4. Such- und Sortierverfahren
 - I. Suchalgorithmen für lineare Strukturen
 - 2. Suchalgorithmen für Graphen
 - 3. Hashtabellen
- 5. Generische Programmierung
 - I. Funktionstemplates
 - 2. Klassentemplates

Zusätzliche Angaben

auch PO21

Modulname: Mikroprozessortechnik

Modulname	Modulcode
Mikroprozessortechnik	Ba 3 – B130
Modulverantwortliche/r	Fakultät
Prof. Dr. Thomas Linkugel	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang

Bachelor Ingenieurwissenschaften, Technische Informatik und Robotik

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	3	Pflichtfach	6.0

Voraussetzungen laut Prüfungsordnung

Mathematik I, Mathematik 2, Physik I, Elektrotechnik I und Elektronik I

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
1.	LV Mikroprozessortechnik	Pflichtfach	4.0	2V IÜ IL 0S 0P
Sum	Summe (Pflicht und Wahlpflicht)			

Qualifikationsziele

Die Studierenden können

- die Architektur von Mikroprozessoren und Mikrocontrollern zu verstehen und erklären,
- die fachlichen Grundlagen auf entsprechende Programmieraufgaben in C und in Assembler übertragen,
- die praxisbezogene Aufgabenstellung analysieren und in ein lauffähiges, fehlerfreies Mikroprozessorprogramm umsetzen,
- die Arbeitsweise aller Elemente von gängigen Mikrocontrollern und die Eignung zugehöriger Entwicklungssysteme verstehen und anwenden,
- bei der Bearbeitung von Programmieraufgaben im Team ihr Handeln koordinieren und gemeinsame Lösungen verfolgen sowie
- bei der individuellen Bearbeitung von Programmieraufgaben zielgerichtet und eigenverantwortlich vorgehen.

Zu erbringende Prüfungsleistung / Studienleistung

K2 / LP

Modulname: Mikroprozessortechnik

Modulname			Modulcode			
Mikroprozessortechnik			BA 3 – BI30			
Veranstaltungsname			Veranstaltungsart		Veranstaltungscode	
Mikroprozessortechnik Projekt			BA31 – B130-VI			
Lehrende/r		Fakultät			Arbeitsaufwand	
Prof. Dr. Thomas Linkugel		Ingenieurwissenschaften und Gesundheit		schaften und	Präsenzstudium: 60 WS Eigenstudium: 120 WS	
Angebotshäufigkeit	ECTS		SWS	Sprache		
Nur im Wintersemester	6.0		4.0	deutsch		

Inhalte

Mikroprozessor- und Mikrocontroller-Architektur, Hardware-Schnittstellen und - Erweiterungen, Interruptverarbeitung, Mikrocontroller-Elemente wie z.B. parallele und serielle Schnittstellen, Zähler und Zeitgeber mit Reload, Compare, und Capture, Digital-Analog- und Analog-Digital-Umsetzer und deren Anwendungen, Programmierung von Mikrocontrollern in C und Assembler, Befehlsaufbau und - kodierung, Programmbeispiele, Speicheraufbau und -verwaltung, Adressierungsarten, Elemente der Entwicklungssysteme

Zusätzliche A	Angaben	
auch PO21		

Mess- und Sensortechnik

Modulname:

Bachelor Ingenieurwissenschaften

Modulname	Modulcode
Mess- und Sensortechnik	Ba 3 – B220
Modulverantwortliche/r	Fakultät
Prof. Dr. Jens Peter Kärst	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang

Bachelor Ingenieurwissenschaften, Informatik und Robotik

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	3	Pflichtfach	6.0

Voraussetzungen laut Prüfungsordnung

Integral- und Differentialrechnung, Analytische Geometrie und lineare Algebra, Grundlagen der Elektronik

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
I.	LV Messtechnik	Pflicht: TI+R	2.5	1.5∨ 0.5Ü 0.5L
2.	LV Sensortechnik	Pflicht: TI+R	2,5	1.5∨ 0.5Ü 0.5L
Sumi	Summe (Pflicht und Wahlpflicht)		5.0	180

Qualifikationsziele

Die Studierenden können in der Mess- und Sensortechnik

- Komponenten für Standardaufgaben auswählen,
- einfache Anpass- und Auswerteschaltungen berechnen,
- ihre Kenntnisse in einen berufspraktischen Kontext übertragen und einordnen,
- Systeme und Schaltungen analysieren und entwerfen sowie
- sich in Arbeitsgruppen organisieren, Experimente systematisch und zielgerichtet durchführen sowie Arbeitsergebnisse kritisch diskutieren.

Die Studierenden kennen

- die Aufgaben von Mess- und Sensortechnik in einer Prozesskette,
- grundlegende Sensor-Wirkprinzipien,
- die Aufgaben und den Grundaufbau der Mess- und Sensor-Elektronik sowie
- Anpassschaltungen für wichtige Sensortypen.

Zu erbringende Prüfungsleistung / Studienleistung

KI(50%) + KI(50%) / LP

Modulname:

Mess- und Sensortechnik

Modulname	Modulcode		
Mess- und Sensortechnik		BA 3 – B220	
Veranstaltungsname	Veranstaltungsart	Veranstaltungscode	
Messtechnik	Vorlesung/Übung	BA 3 – B220-VI	
Lehrende/r	Fakultät	Arbeitsaufwand	
Prof. Dr. Jens Peter Kärst	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 40 WS Eigenstudium: 50 WS	

Angebotshäufigkeit	ECTS	SWS	Sprache
Nur im Wintersemester	3.0	2.5	deutsch

Inhalte

Messtechnik:

- Fehlerangaben und Fehlerfortpflanzung
- analoge SchaltungstechnikOperationsverstärker und Messketten
- Aktive und passive Filter
- Störeinkopplung und Rauschen
- Analog/Digital und Digital/Analog-Umsetzer

Zusätzliche Angaben

auch PO21, englischer Titel "Measurement technology

Modulname:

Mess- und Sensortechnik

Modulname	Modulcode		
Mess- und Sensortechnik	BA 3 – B020		
Veranstaltungsname	Veranstaltungsart	Veranstaltungscode	
Sensortechnik	Vorlesung/Übung	BA 3 – B020-V2	
Lehrende/r	Fakultät	Arbeitsaufwand	
Prof. Dr. Steffen Kaufmann	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 40 WS Eigenstudium: 50 WS	

Angebotshäufigkeit	ECTS	SWS	Sprache
Nur im Wintersemester	3.0	2.5	deutsch

Inhalte

Sensortechnik:

- Einteilung von Sensoren
- Sensor-Wirkprinzipien und ihre Nutzung zur Messung nichtelektrischer Größen
- Auswerteschaltungen für unterschiedliche Sensortypen
- Signalaufbereitung und -verarbeitung
- Überblick Sensortechnologien

Zusätzliche Angaben

auch PO21, englischer Titel "Sensor technology

Bachelor Ingenieurwissenschaften Festigkeitslehre & Finite Elemente

Modulname:

Modulname	Modulcode
Festigkeitslehre	Ba 3 – B320
Modulverantwortliche/r	Fakultät
Prof. Dr. Salvatore Sternkopf, Prof. DrIng. Christopher Frey	Ingenieurwissenschaften und Gesundheit

Dauer des Moduls	Empf. Semester	Modultyp	ECTS	
ein Semester	3	Pflichtfach	6.0	

Voraussetzungen laut Prüfungsordnung
Statik

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
1.	LV Festigkeitslehre (Prof. Sternkopf)	Pflichtfach	2.5	90
2.	LV Finite Element Methode FEM (Prof. Frey)	Pflichtfach	2,5	90
Sumi	5.0	180		

Qualifikationsziele

Studierende sind in der Lage die Grundlagenkenntnisse im Bereich der Elastizitäts- und Festigkeitslehre zu beschreiben, zu verstehen und zu erläutern. Darüber hinaus können diese mechanische Bauteile modellieren und berechnen, können Haltbarkeitsnachweise von Bauteilen und mechanischen Systemstrukturen diskutieren, planen, umsetzen und evaluieren. Weitere Methodenkompetenz erhalten Studierende durch begleitende Übungen und Selbststudium

Zu erbringende Prüfungsleistung / Studienleistung

K2 [100%] od. [KI + KI]

Bachelor Ingenieurwissenschaften

Festigkeitslehre & Finite Elemente

Modulname:

Modulname				Modulcode		
Festigkeitslehre					BA 3 – B320	
Veranstaltungsname			Veranstaltungsart		Veranstaltungscode	
Festigkeitslehre Lehrende/r Prof. Dr. Salvatore Sternkopf, Prof. DrIng. Christopher Frey Angebotshäufigkeit ECTS		Vorlesung/Übung Fakultät		ng	BA 3 – B320-VI	
					Arbeitsaufwand	
			Ingenieurwissenschaften und Gesundheit		Präsenzstudium: 75 WS Eigenstudium: 105 WS	
			SWS	Sprache		
nur im Wintersemester	6.0		5.0	deutsch		

Inhalte

Elastizitätslehre und Festigkeitslehre:

- Zug, Druck,
- · einachsiger und zweiachsiger Spannungszustand,
- Mohrs'che Spannungskreise,
- interne Gleichbewichts- und Kompatibilitätsbedingungen in der Ebene und im Raum,
- Schiefe Biegung,
- Torsion inkl. geschlossener und offener Profile (Bredt'sche Formeln),
- · Knickung nach Euler und Tetmajer,
- Verformungen, statisch unbestimmte Systeme.

Finte Elemente:

- Theoretischen Grundlagen der Finite-Elemente-Methode (FEM)
- Modellierung und Berechnen mechanischer Bauteile und Strukturen
- Randbedingungen definieren
- Lasten einleiten
- Materialeigenschaften zuweisen
- Vernetzen
- Berechnungsergebnisse auf Plausibilität prüfen

Zusätzliche Angaben

Auch PO21

Fertigungsverfahren

Modulname:

Modulname	Modulcode
Fertigungsverfahren	BA 3 – B430
Modulverantwortliche/r	Fakultät
Prof. Dr. Christian Podolsky	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang		
Bachelor Ingenieurwissenschaften, Medizintechnik		

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	3	Wahlpflichtfach	6.0

Voraussetzungen laut Prüfungsordnung	
Statik, Werkstoffkunde und Chemie	

Zugehörige Lehrveranstaltungen:

	<u> </u>			
Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
l.	LV Fertigungsverfahren	Pflichtfach	4.0	4V 0Ü 0L 0S 0P
Summe (Pflicht und Wahlpflicht)				180

Qualifikationsziele

Die Studierenden können:

- die grundlegenden Fertigungsverfahren Urformen, Umformen, Trennen, Fügen, Stoffeigenschaften ändern unterscheiden und in ihrer Leistungsfähigkeit beurteilen.
- eine Konstruktion und ihre fertigungstechnischen Anforderungsprofil verknüpfen.
- geeignete Fertigungsverfahren anhand praxisrelevanter technischer und wirtschaftlicher Kriterien selektieren und bewerten.
- sich eigenverantwortlich und systematisch Fachliteratur erschließen und ihre Lernprozesse kritisch, fachlich überprüfen.
- den industriellen Kontext praxisbezogen nachvollziehen, z.B. durch die Teilnahme an einer Exkursion

Zu erbringende Prüfungsleistung / Studienleistung

K2

Modulname: Fertigungsverfahren

Modulname				Modulcode			
Fertigungsverfahren					BA 3 – B430		
Veranstaltungsname			Veranstaltungsart		Veranstaltungscode		
Fertigungsverfahren		Vo	Vorlesung/Übung		BA 3 – B430-VI		
Lehrende/r		Fakultät			Arbeitsaufwand		
Prof. Dr. Manfred Bußmann Prof. Dr. Christian Podolsky			Ingenieurwissenschaften und Gesundheit		Präsenzstudium: 60 WS Eigenstudium: 120 WS		
Angebotshäufigkeit	ECTS		SWS	Sprache			
Nur im Wintersemester	6.0		4.0	deutsch			

Inhalte

- Vorstellung und Analyse der mechanischen Fertigungsverfahren
- Maschinenkonzepte mit Aufbau, Prinzipien, Antrieben und dynamischem Verhalten.
- Fertigungsgenauigkeiten, Oberflächenqualitäten, Fehlereinflüsse.
- Fertigungsverfahren und verkettete Systeme.
- Grundlagen der fertigungsgerechten Konstruktion.

Optional: Eine Exkursion zu einem fertigendem Unternehmen zum besseren Verständnis der Produktionsprozesse.

Zusätzliche Angaber	
auch PO21	

Grundlagen der Lasertechnik

Modulname:

Modulname	Modulcode
Grundlagen der Lasertechnik	BA 3 – B520
Modulverantwortliche/r	Fakultät
Prof. Dr. Stephan Wieneke	Ingenieurwissenschaften und Gesundheit

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	3	Pflichtfach	6.0

Voraussetzungen laut Prüfungsordnung
Differential- und Integralrechnung

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
I.	LV Grundlagen der Lasertechnik	Pflichtfach	5.0	4V IÜ 0L 0S IP
Summe (Pflicht und Wahlpflicht)			5.0	180

Qualifikationsziele

Die Studierenden sind in der Lage

- die Eigenschaften kohärenter Strahlung zu benennen und anhand von Fallbeispielen zu bewerten.
- die fundamentalen Grundlagen zur Ausbreitung elektromagnetischer Wellen zu analysieren und beschreiben.
- Die physikalischen Prozesse wie Interferenz und Beugung zur Analyse von optischen Phänomenen anzuwenden.
- Die theoretischen Konzepte der Laserphysik auf die Funktion von Lasern anzuwenden.
- Mit Hilfe der erlangten Kenntnisse zu verschiedenen Lasertypen deren spezifischen Eigenschaften und Einsatzmöglichkeiten zu evaluieren.
- Experimentelle Aufbauten basierend auf kohärenter Strahlung zu entwerfen.
- Die grundlegenden Konzepte der nichtlinearen Optik auf moderne optische Systeme anzuwenden.
- anhand von kleinen Projekten die vermittelten theoretischen Grundlagen auf praktische Anwendungen zu übertragen um diese zu verinnerlichen.

Zu erbringende Prüfungsleistung / Studienleistung

K2 + LP

Grundlagen der Lasertechnik

Modulname:

Modulname				Modulcode			
Grundlagen der Lasertechnik					BA 3 – B520		
Veranstaltungsname			Veranstaltungsart		Veranstaltungscode		
Grundlagen der Lasertechnik		Vorlesung/Übung		ıg	BA 3 – B520-VI		
Lehrende/r		Fakultät			Arbeitsaufwand		
Prof. Dr. Stephan Wieneke		Ingenieurwissenschaften und		schaften und	Präsenzstudium: 75 WS		
		Ge	sundheit		Eigenstudium: 105 WS		
Angebotshäufigkeit	ECTS	SWS Sprache		Sprache			
Nur im Wintersemester 6.0			5.0	deutsch			

Inhalte

Die Vorlesung beinhaltet folgende Themen:

- Eigenschaften von Laserstrahlung (Monochomasie, Energie- und Leistungsdichte, etc.)
- Grundlagen der Wellentheorie (von den Maxwell-Gleichungen zum elektromagnetischen Feld)
- Gruppen- und Phasengeschwindigkeit, Dispersion, etc.
- Interferenz (Zweistrahl und Vielstrahlinterferenz) und Beugung
- Räumliche und zeitliche Kohärenz (komplexe Kreuzkorrelationsfunktion, etc.)
- Theoretische Grundlagen zur Laser-Physik (Absorption, Emission und stimulierte Emission, Ratengleichungen, Energieniveaus, etc.)
- Optische Resonatoren (Spiegel Anordnungen, Gain und Verluste)
- Laserstrahlführung und -analyse
- Lasertypen (Festkörperlaser, Gaslaser, Diodenlaser, DFB-Laser, Schreibenlaser und QK-Laser)
- Grundlagen der Laserdynamik (Erzeugung kurzer Pulse Q-switching, Mode-Locking, Selbstphasenmodulation, etc.)
- Grundlagen der nichtlinearen Optik (optisch parametrische Oszillatoren, Frequenzverdopplung, Vier-Wellen-Mischung, etc.)

Zusätzliche Angaben

auch PO21, englischer Titel "Fundamentals of laser technology"

Modulname: Regelungstechnik

Modulname	Modulcode
Regelungstechnik	Ba 3 – C010
Modulverantwortliche/r	Fakultät
Studiendekan*in	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang

Bachelor Ingenieurwissenschaften, Technische Informatik und Robotik

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	3	Pflichtfach	6.0

Voraussetzungen laut Prüfungsordnung
keine

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
1.	LV Regelungstechnik	Präsenz	5.0	3V IÜ IL 0S 0P
Summe (Pflicht und Wahlpflicht)			5.0	180

Qualifikationsziele

Die Studierenden

- verstehen, was dynamische Systeme sind und wie sie beschrieben werden
- kennen die klassischen Regler und können sie erläutern und implementieren
- können Modelle erstellen und analysieren
- können Regler auslegen
- beurteilen die Güte von Modellen und Regelungen
- analysieren Systeme aus unterschiedlichen Themengebieten auf Basis von Modellen
- können regelungstechnische Aufgaben systematisch und praxisorientiert bearbeiten und lösen
- erkennen Gemeinsamkeiten bei Aufgaben aus E-Technik, Mechanik, usw.
- lösen Aufgaben im Team
- können sich mit Fachleuten austauschen

Zu erbringende Prüfungsleistung / Studienleistung

K2 / LP

Regelungstechnik

Modulname:

Modulname			Modulcode			
Regelungstechnik			BA 3 - C010			
Veranstaltungsname			Veranstaltungsart		Veranstaltungscode	
Regelungstechnik		Projekt			BA31 - C010-VI	
Lehrende/r		Fakultät			Arbeitsaufwand	
Studiendekan*in		Ingenieurwissenschaften und		nschaften und	Präsenzstudium: 75 WS	
		Ge	sundheit		Eigenstudium: 105 WS	
Angebotshäufigkeit	ECTS	ECTS SWS Sprache				
Jedes Semester	6.0		5.0	deutsch		

Inhalte

Vorlesung

- Struktur von Regelungen und Steuerungen
- Anforderungen an Regelungen
- Modellierung im Zeitbereich, Differentialgleichungen
- Modellierung im Frequenzbereich, Übertragungsfunktion
- P, I, PI, PD, PID-Regler
- Stabilitätskriterien, Auslegungskriterien (Pole, Nyquist)
- Reglerauslegung
- Simulation von Strecken und Regelkreisen Praktikum
- Modellierung
- Analoge lineare Regelungen
- Simulation von Regelungen

Zusätzliche Angaben

auch PO21

Numerische Mathematik

Modulname:

Modulname	Modulcode
Numerische Mathematik	Ba 3 – C040
Modulverantwortliche/r	Fakultät
Studiendekan*in	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang

Bachelor Ingenieurwissenschaften, Medizintechnik, Technische Informatik und Robotik

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	3	Pflichtfach	6.0

Voraussetzungen laut Prüfungsordnung
keine

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
l.	LV Numerische Mathematik	Pflichtfach	6.0	4V 2Ü 0L 0S 0P
Sum	Summe (Pflicht und Wahlpflicht)			

Qualifikationsziele

- I. **Wissen**: Die Studierenden können grundlegende mathematische Begriffe und Modelle aus den Bereichen der gewöhnlichen Differentialgleichungen, numerischen Mathematik sowie Stochastik und Statistik benennen und beschreiben.
- 2. **Verstehen**: Die Studierenden können
 - bezogen auf die Lehrinhalte Modelle in Naturwissenschaft und Technik verstehen,
 - Differentialgleichungen zur Beschreibung naturwissenschaftlicher Zusammenhänge nutzen,
 - mit numerische Methoden umgehen,
 - Instrumente der Stochastik und Statistik nutzen.
- 3. Anwenden: Die Studierenden können
 - gewöhnliche Differentialgleichungen erster und höherer Ordnung lösen,
 - numerische Lösungen bestimmen und interpretieren,
 - mit Wahrscheinlichkeitsverteilungen diskreter und stetiger Zufallsvariablen umgehen,
 - statistische Techniken im Umgang mit Daten heranziehen.
- 4. **Analysieren**: Die Studierenden können mathematische Modelle verwenden, um spezifische naturwissenschaftlich-technische Probleme zu analysieren.
- 5. **Synthetisieren**: Die Studierenden können sich selbständig in Lerngruppen organisieren und eigene Lernprozesse in der Diskussion zu überprüfen. Sie sind in der Lage, an der Wissensaneignung in seminaristischen Vorlesungen aktiv mitzuwirken, Lösungsvorschläge für Aufgaben in Lerngruppen zu erarbeiten und diese zu präsentieren.

Zu erbringende Prüfungsleistung / Studienleistung

Modulname: Numerische Mathematik

K2 oder K1[50%] + K1[50%]

Modulname					Modulcode	
Numerische Mathematik					BA 3 – C040	
Veranstaltungsname			Veranstaltungsart		Veranstaltungscode	
Numerische Mathematik		Projekt			BA31 – C040-VI	
Lehrende/r		Fakultät			Arbeitsaufwand	
Studiendekan*in		Ingenieurwissenschaften und		schaften und	Präsenzstudium: 90 WS	
		Ge	sundheit		Eigenstudium: 90 WS	
Angebotshäufigkeit ECTS			SWS	Sprache		
Nur im Wintersemester 6.0			6.0	deutsch		

Inhalte

- Gewöhnliche Differentialgleichungen bis n-ter Ordnung
 - Differentialgleichungen I. Ordnung: Klassifizierung, Richtungsfeld, Lösungsmethoden
 - Lineare Differentialgleichungen höherer Ordnung: Lösungsmethoden homogener und inhomogener Differentialgleichungen
 - Systeme von Differentialgleichungen I. Ordnung
- Numerische Mathematik:
 - Approximation mit Polynomen und Splines
 - numerische Integration
 - Lösen von nichtlinearen Gleichungen und Gleichungssystemen
 - Iterationsverfahren
- Wahrscheinlichkeitsrechnung: Grundbegriffe, Binomialverteilung, hypergeometrische Verteilung, Normalverteilung
- Statistik: Grundbegriffe, gruppierte Stichproben, Schätzwerte und Vertrauensintervalle für Parameter der Verteilung, Korrelationskoeffizient, lineare und nichtlineare Regression

Zusätzliche Angaben auch PO21

Modulname: Wissenschaftliches Arbeiten

Modulname	Modulcode
Wissenschaftliches Arbeiten	Ba 3 – C051
Modulverantwortliche/r	Fakultät
Prof. Dr. rer. nat. Salvatore Sternkopf	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang

Bachelor Ingenieurwissenschaften, Medizintechnik, Technische Informatik und Robotik

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	3	Pflichtfach	6.0

Voraussetzungen laut Prüfungsordnung
keine

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
1.	LV Numerische Mathematik	Pflichtfach	2.0	IV 0Ü 0L 0S IP
Sum	Summe (Pflicht und Wahlpflicht)			90

Qualifikationsziele

• Die Studierenden wenden ingenieurwissenschaftliche Grundlagen auf praxisnahe Fragestellungen an, analysieren Lösungswege und entwickeln eigenständig anwendungsorientierte Ergebnisse. Sie dokumentieren ihre Ergebnisse strukturiert in Berichtsform und präsentieren diese adressatengerecht in freier Rede, in schriftlicher Form oder als Dokument nach wissenschaftlichen Standards.

Zu erbringende Prüfungsleistung / Studienleistung

HA oder PA oder M

Modulname: Wissenschaftliches Arbeiten

Modulname					Modulcode	
Wissenschaftliches Arbeiten					BA 3 – C051	
Veranstaltungsname			Veranstaltungsart		Veranstaltungscode	
Wissenschaftliches Arbeiten		Ser	Seminar		BA3 – C051-VI	
Lehrende/r		Fakultät			Arbeitsaufwand	
Prof. Dr. rer. nat. Salvatore Sternkopf			Ingenieurwissenschaften und Gesundheit		Präsenzstudium: 30 WS Eigenstudium: 60 WS	
Angebotshäufigkeit	ngebotshäufigkeit ECTS		SWS	Sprache		
Jedes Semester 3.0			2.0	deutsch		

Inhalte

- Anmeldung von Abschlussarbeiten
- Verfassen von wissenschaftlichen Arbeiten
- Verfassen von Bewerbungsschreiben
- Führen von Bewerbungsgesprächen
- Aufbau und Führung von Assessmentgesprächen

Zusätzliche Angaben	
auch PO21	

Modulname: Technisches Englisch

Modulname	Modulcode
Wissenschaftliches Arbeiten	Ba 3 – C052
Modulverantwortliche/r	Fakultät
Studiendekan*in	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang

Bachelor Ingenieurwissenschaften, Medizintechnik, Technische Informatik und Robotik

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	3	Pflichtfach	3.0

Voraussetzungen laut Prüfungsordnung
keine

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
1.	LV Technisches Englisch	Pflichtfach	2.0	0V 0Ü 0L 2S 0P
Summe (Pflicht und Wahlpflicht)			2.0	180

Qualifikationsziele

- Ausreichende Sprachkenntnisse, um einem seminaristischen Unterricht in englischer Sprache folgen zu können - nachgewiesen durch eine entsprechende Punktzahl im Einstufungstest
- Teilnahme an mindestens 75% des Kursunterrichts

Zu erbringende Prüfungsleistung / Studienleistung

ΚI

Modulname: Technisches Englisch

Modulname		Modulcode				
Technisches Englisch					BA 3 – C051	
Veranstaltungsname Veranstaltungsart		Veranstaltungscode				
Technisches Englisch		Seminar			BA3 – C051-VI	
Lehrende/r		Fak	kultät		Arbeitsaufwand	
Studiendekan*in		Ingenieurwissenschaften und		nschaften und	Präsenzstudium: 30 WS	
		Gesundheit			Eigenstudium: 60 WS	
Angebotshäufigkeit	ECTS		SWS	Sprache		
Jedes Semester	3.0		2.0	deutsch		

Inhalte

Sprachliche Elemente des technischen Englisch

- Strukturen technischer Fachtexte in Englisch
- Beschreibung und Definition von technischen Objekten und Prozessabläufen in Englisch
- Englischsprachige Darstellung technischer Funktionen
- Mündliche und schriftliche Kommunikation zu technischen Themen in englischer Sprache

Zusätzliche Angaben	
auch PO21	

Modulname: Kommunikationstechnik

Modulname	Modulcode
Kommunikationstechnik	Ba 4 – A I 20
Modulverantwortliche/r	Fakultät
Prof. Dr. Achim Ibenthal	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang

Bachelor Ingenieurwissenschaften, Technische Informatik und Robotik

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	4	Pflichtfach	6.0

Voraussetzungen laut Prüfungsordnung

Integral- und Differentialrechnung, Analytische Geometrie und lineare Algebra, Elektrotechnik

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
I.	LV Kommunikationstechnik	Pflichtfach	5.0	3V IÜ IL 0S 0P
Summe (Pflicht und Wahlpflicht)				180

Qualifikationsziele

- I. Wissensstufe (Erinnerung)
- Beschreiben Sie das Nachrichtenübertragungssystem.
- Erklären Sie grundlegende Signal- und Testformen.
- Definieren Sie Pegel und Dämpfung.
- 2. Verstehensstufe (Verständnis)
- Erläutern Sie Fourierreihe und -transformation.
- Beschreiben Sie LTI-Systeme, Impulsantwort und Übertragungsfunktion.
- Unterscheiden Sie lineare und nichtlineare Systeme.
- Verstehen Sie Amplituden- und Winkelmodulation.
- 3. Anwendungsstufe (Anwendung)
- Wenden Sie Fourier-Theoreme an.
- Berechnen Sie Pegel und Dämpfung.
- Implementieren Sie einfache Leitungskodierung und Pulsmodulation.
- 4. Analyse-Stufe (Analyse)
- Analysieren Sie die Wirkung von Kanalrauschen auf Modulationsverfahren (QPSK, QAM, OFDM).
- Untersuchen Sie Filtermodelle von LTI-Systemen.
- Bewerten Sie Sender- und Empfängerkonzepte.
- 5. Bewertungsstufe (Evaluation)

Modulname:

- Kommunikationstechnik
- Vergleichen Sie digitale Modulationstechniken hinsichtlich Effizienz und Qualität.
- Bewerten Sie Fehlerkorrekturverfahren.
- Kritisieren Sie nichtlineare Systeme hinsichtlich ihrer Realisierbarkeit.
- 6. Synthesestufe (Erschaffung)
- Entwickeln Sie ein Kommunikationssystemmodell.
- Entwerfen Sie eine Modulations-/Demodulationseinheit.
- Kreieren Sie eine Fehlerkorrekturstrategie.

Zu erbringende Prüfungsleistung / Studienleistung

K2 / LP

Modulname	Modulcode		
Kommunikationstechnik	BA 4 – A120		
Veranstaltungsname Veranstaltungsart		Veranstaltungscode	
Kommunikationstechnik Vorlesung/Übung I		BA4 – A120-VI	
Lehrende/r	Fakultät	Arbeitsaufwand	
Prof. Dr. Achim Ibenthal	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 75 WS Eigenstudium: 105 WS	

Angebotshäufigkeit	ECTS	SWS	Sprache
Nur im Sommersemester	6.0	5.0	deutsch

Inhalte

- Verallgemeinertes Nachrichtenübertragungssystem
- Signalformen und Testsignale
- Pegel und Dämpfung
- Fourieranalyse: Fourierreihe und Fouriertransformation, Theoreme
- LTI Systeme, Impulsantwort, Übertragungsfunktion, Filtermodelle
- Nichtlineare Systeme
- Amplituden- und Winkelmodulation
- Leitungskodierung
- Pulsmodulation
- Digitale Modulation: QPSK, QAM, OFDM, Spreiztechnik
- Kanalrauschen
- Fehlerkorrekturverfahren
- Sender- und Empfängerkonzepte,
- Ausgewählte Kommunikationssysteme

Zusätzliche Angaben

auch PO21, englischer Titel "Communications Theory"

Bachelor Ingenieurwissenschaften

Hard- und Software-Entwurfsmuster

Modulname:

Modulname	Modulcode
Hard- und Software-Entwurfsmuster	Ba 4 – A I 30
Modulverantwortliche/r	Fakultät
Prof. DrIng. Steffen Kaufmann	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang

Bachelor Ingenieurwissenschaften, Technische Informatik und Robotik

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	4	Pflichtfach	6.0

Voraussetzungen laut Prüfungsordnung

Mikroprozessortechnik, Grundlagen und Vertiefung in der Elektronik empfohlen

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
l.	LV Hard- und Software-Entwurfsmuster	Pflichtfach	5.0	3V IÜ IL 0S 0P
Sum	me (Pflicht und Wahlpflicht)	5.0	180	

Qualifikationsziele

Die Studierenden erläutern Konzepte des strukturierten Hard- und Softwareentwurfs sowie des Systementwurfs. Sie entwerfen eigenständig Hardware- und Softwarearchitekturen, modellieren logische Schaltungen in VHDL und implementieren diese auf FPGAs. Sie entwickeln prozedurale Softwarelösungen für sequentielle und parallele Verarbeitungseinheiten unter Anwendung geeigneter Entwurfsmuster (Design Patterns) und bewerten deren Eignung im Systemkontext.

Zu erbringende Prüfungsleistung / Studienleistung

K2/LP

Bachelor Ingenieurwissenschaften

Hard- und Software-Entwurfsmuster

Modulname:

Modulname				Modulcode		
Hard- und Software-Entwurfsmuster				BA 4 – A130		
Veranstaltungsname		Veranstaltungsart		rt	Veranstaltungscode	
Hard- und Software- Entwurfsmuster		Vorlesung/Übung		ng	BA 4 – A130-VI	
Lehrende/r		Fakultät			Arbeitsaufwand	
Prof. DrIng. Steffen Kaufmann		Ingenieurwissenschaften und Gesundheit		schaften und	Präsenzstudium: 75 WS Eigenstudium: 105 WS	
Angebotshäufigkeit	ECTS		SWS	Sprache		
Nur im Sommersemester	6.0		5.0	deutsch		

Inhalte

- Studierende sollen in die Lage versetzt werden Hardware- und Softwarearchitekturen zu planen, zu strukturieren und Umzusetzen. Dazu sollen verschieden Entwurfsmuster (design patterns) kennen gelernt und untersucht werden
- Am konkreten Beispiel eines Projektes aus kombiniertem Hard- und Softwareentwurf soll ein FPGA mit VHDL und C programmiert werden. Dazu soll ein gesamter Hard- und Software-Entwurf mit den Studierenden erarbeitet und teilweise implementiert werden

Zusätzliche Angaben	
auch PO21	

Halbleiter und Digitalelektronik

Modulname:

Modulname	Modulcode
Halbleiter und Digitalelektronik	Ba 4 – A220
Modulverantwortliche/r	Fakultät
Prof. DrIng. Steffen Kaufmann	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang

Bachelor Ingenieurwissenschaften, Technische Informatik und Robotik

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	4	Pflichtfach	6.0

Voraussetzungen laut Prüfungsordnung

Differential- und Integralrechnung, AGLA, Elektrotechnik, Elektronik I empfohlen

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
I.	LV Halbleiter und Digitalelektronik	Pflichtfach	4.0	2V IÜ IL 0S 0P
Sum	me (Pflicht und Wahlpflicht)	4.0	180	

Qualifikationsziele

- Verstehen und Anwenden grundlegender physikalischer Prinzipien in Festkörpern Kenntnisse über Konzepte und Eigenschaften von Halbleiterbauelementen
- Erkennen der Zusammenhänge zwischen inneren Mechanismen und äußeren Parametern
- Erlernen und Anwenden von Modellen zur Bauelementbeschreibung
- Verstehen der Einflüsse von realen Operationsverstärkern
- Verstehen der Grundlagen Digitaler Schaltungstechnik

Zu erbringende Prüfungsleistung / Studienleistung

K2 / LP

Halbleiter und Digitalelektronik

Modulname:

Modulname				Modulcode		
Halbleiter und Digitalelektronik				BA 4 – A220		
Veranstaltungsname			Veranstaltungsart		Veranstaltungscode	
Halbleiter und Digitalelektronik		Ser	Seminar		BA 4 – A220-VI	
Lehrende/r		Fakultät			Arbeitsaufwand	
Prof. DrIng. Steffen Kaufmann			schaften und	Präsenzstudium: 60 WS Eigenstudium: 120 WS		
Angebotshäufigkeit	ECTS	ECTS SWS Sprache		Sprache		
Nur im Sommersemester	6.0		4.0	deutsch		

Inhalte

- Halbleiterdioden: Diffusionsspannung, pn-Übergang, Kapazitäten, Diodenmodell, Metall-Halbleiterübergang, Spezialdioden
- Optoelektronische Grundlagen: Strahlung, Lichtemitterdioden (LED) und Schaltungstechnik, Fotoempfänger und Detektorschaltungen
- Verstärken: Realer OPV, Rauschen, Verstärken mit Transistoren, Bauelemente- und Schaltungsintegration
- Schalten mit Halbleiterbauelementen: Dioden, bipolarer Inverter, MOS-Kondensatoren, integrierter CMOS-Inverter, FET-Analogschalter
- Technologien digitaler Schaltungen (TTL, CMOS, ECL, PLD, CPLD, FPGA, ASIC)
- Grundlagen kombinatorischer Digitalschaltungen (Logikgatter, Multiplexer) und sequentieller Digitalschaltungen (Flip-Flops, Register, Zähler)

Zusätzliche Angaben

auch PO21, englischer Titel "Semiconductors and digital electronics"

Vertiefung der Elektrotechnik

Modulname:

Modulname	Modulcode
Vertiefung der Elektrotechnik	Ba 4 – A230
Modulverantwortliche/r	Fakultät
Prof. Dr. Jens Peter Kärst	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang

Bachelor Ingenieurwissenschaften, Technische Informatik und Robotik

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	4	Pflichtfach	6.0

Voraussetzungen laut Prüfungsordnung

Differential- und Integralrechnung, AGLA, Elektrotechnik

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
I.	LV Vertiefung der Elektrotechnik	Pflichtfach	5.0	2V 2Ü IL 0S 0P
Sum	me (Pflicht und Wahlpflicht)	5.0	180	

Qualifikationsziele

Die Studierenden können ihr Wissen über

- lineare Schaltungen im Zeit- bzw. Frequenzbereich
- elektromagnetische Felder
- skalare, vektorielle und numerische Berechnungsmethoden auf einfache elektrische Schaltungen und Anordnungen übertragen und zur Anwendung bringen.
- Sie können sich in Arbeitsgruppen oder Einzelarbeit selbst organisieren sowie Arbeitsprozesse planvoll und zielgerichtet vorantreiben.

Zu erbringende Prüfungsleistung / Studienleistung

K2 / LP

Vertiefung der Elektrotechnik

Modulname:

Modulname				Modulcode		
Vertiefung der Elektrotechnik				BA 4 – A230		
Veranstaltungsname			Veranstaltungsart		Veranstaltungscode	
Vertiefung der Elektrotechnik		Ser	Seminar		BA 4 – A230-VI	
Lehrende/r		Fakultät			Arbeitsaufwand	
Prof. Dr. Jens Peter Kärst		Ingenieurwissenschaften und Gesundheit		nschaften und	Präsenzstudium: 75 WS Eigenstudium: 105 WS	
Angebotshäufigkeit	ECTS	ECTS SWS Sprache				
Nur im Sommersemester	6.0		5.0	deutsch		

Inhalte

Netzwerke:

- Netzwerkberechnung. Berechnungsverfahren und Simulation (SPICE)
- Schwingkreise, Ortskurven, Schaltvorgänge
- Drehstrom, unsymmetrische
 - Belastung Felder:
- Elektro- und Magnetostatik, Gaußscher Satz, Durchflutungssatz, Kräfte, Energie
- Quasistationäre Felder, Felddiffusion, Wirbelströme, Skin- und Proximity-Effekt, realer Transformator
- Maxwell-Gleichungen, Poynting-Vektor, Leitungstheorie

Zusätzliche Angaben

auch PO21, englischer Titel "Electrical engineering"

Modulname: Werkstofftechnik

Modulname	Modulcode
Werkstofftechnik	BA 4 – A330
Modulverantwortliche/r	Fakultät
Prof. Dr. Jan Rossel	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang	
Bachelor Ingenieurwissenschaften	

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	4	Pflichtfach	6.0

Voraussetzungen laut Prüfungsordnung	
Werkstoffkunde und Chemie empfohlen	

Zugehörige Lehrveranstaltungen:

	<u> </u>			
Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
l.	LV Werkstofftechnik	Pflichtfach	5.0	3V IÜ IL 0S 0P
Summe (Pflicht und Wahlpflicht)				180

Oualifikationsziele

Die Studierenden können

- die Struktur-Eigenschaftsbeziehungen von Kunststoffen (K.) erklären und deren Einfluss auf die Herstellung von K. ableiten sowie verarbeitungsrelevante Eigenschaften bei ihrer Auswahl für verschiedene Anwendungen prüfen und begründet entscheiden
- die Eignung unterschiedlicher K.-Verarbeitungsmaschinen /-verfahren beurteilen
- komplexe Aufgaben zur Herstellung von Teilen und Halbzeugen systematisch analysieren (Auswahl jeweils geeigneter K., Werkzeuge und Fertigungsverfahren) und diese lösungsorientiert bearbeiten
- Keramik, Hartmetalle und Cermets hinsichtlich Eigenschaften, Herstellung und Anwendungen einordnen und bewerten
- relevante Faktoren zur Minderung von Reibung und Verschleiß benennen und daraus tribologische Systeme aus Vorlagen ableiten
- Versagensmechanismen und Ermüdungserscheinungen von Werkstoffen beurteilen
- Prüf- und Fertigungsverfahren im Praktikum zielgerichtet durchführen und bewerten
- sich Fachwissen aneignen und Lernprozesse überprüfen

Zu erbringende Prüfungsleistung / Studienleistung

K2 / LP

Modulname: Werkstofftechnik

Angebotshäufigkeit	ECTS	SWS	Sprache
Nur im Sommersemester	6.0	5.0	deutsch

Modulname	Modulcode		
Werkstofftechnik	BA 4 – A330		
Veranstaltungsname	Veranstaltungsart	Veranstaltungscode	
LV Werkstofftechnik	Vorlesung/Übung	BA 4 – A330-VI	
Lehrende/r	Fakultät	Arbeitsaufwand	
Prof. Dr. Jan Rossel	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 75 WS Eigenstudium: 105 WS	

Inhalte

Kunststofftechnik

- I. Herstellung, Eigenschaften, Verarbeitungsverhalten von K.
- 2. Modifizierung und Verstärkung von K.
- 3. Aufbereitung, Extrusion, Kalandrieren, Spritzgießen, Thermoformen
- 4. Schaumstoffe, Laminierverfahren, Gießen, FKV
- 5. Materialien für additive Fertigungsverfahren
- 6. Biobasierte und biologisch abbaubare Kunststoffe
- 7. Füge- und Prüfverfahren

Sonstige Werkstofftechnik

- 8. Keramische u. Verbundwerkstoffe, Hartmetalle, Cermets, Gläser
- 9. Rissausbreitung, Ermüdung
- 10. Reibung, Verschleiß

Zusätzliche Angaben

auch PO21 englischer Titel "Materials Engineering"

Bachelor Ingenieurwissenschaften Strömunslehre und Thermodynamik

Modulname:

Modulname	Modulcode
Strömungslehre und Thermodynamik	BA 4 – A420
Modulverantwortliche/r	Fakultät
Studiendekan*in	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang

Bachelor Ingenieurwissenschaften, Medizintechnik, Orthobionik

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	4	Wahlpflichtfach	6.0

Voraussetzungen laut Prüfungsordnung

Statik, Dynamik

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
l.	LV Strömungslehre und Thermodynamik	Pflichtfach	4.0	2V 2Ü 0L 0S 0P
Sumi	4.0	180		

Qualifikationsziele

Die Studierenden können

- die fachlichen Grundlagen technischer Strömungen und thermodynamischer Prozesse differenziert wiedergeben,
- die fachlichen Zusammenhänge in der Theorie einordnen.
- grundlegende Berechnungen selbstständig durchführen, auswerten und schriftlich dokumentieren.

Zu erbringende Prüfungsleistung / Studienleistung

K2

Bachelor Ingenieurwissenschaften

Strömunslehre und Thermodynamik

Modulname:

Modulname				Modulcode		
Strömungslehre und Thermodynamik					BA 4 – A420	
Veranstaltungsname		Veranstaltungsart		rt	Veranstaltungscode	
Strömungslehre und Thermodynamik		Vorlesung/Übung		ıg	BA 4 – A420-VI	
Lehrende/r		Fakultät			Arbeitsaufwand	
Studiendekan*in		Ingenieurwissenschaften und Gesundheit		schaften und	Präsenzstudium: 75 WS Eigenstudium: 105 WS	
Angebotshäufigkeit	ECTS		SWS	Sprache		
Nur im Sommersemester	6.0		4.0	deutsch		

Inhalte

Grundlagen der Thermodynamik:

- Einführung der Grundgrößen, Druck, Temperatur, Dichte, Wärme, Arbeit.
- Energiegleichung geschlossene/offene Systeme.
- Zustandsänderungen von Gasen
- 1/2 Hauptsatz der Thermodynamik, Thermodynamische Kreisprozesse

Grundlagen der Strömungslehre:

- Theorie inkompressibler Flüssigkeiten,
- Hydrostatik,
- Kontinuitätsgleichung,
- Impulsgleichung, Drehimpulsgleichung
- Bernoulli-Gleichung,
- 1. Rohreibung und Strömungsverluste.

Zusätzliche Angaben

auch PO21, englischer Titel "Fluid- and Thermodynamics"

Modulname:

Industrie 4.0

Modulname	Modulcode
Industrie 4.0	BA 4 – A530
Modulverantwortliche/r	Fakultät
Prof. Dr. rer. nat. Salvatore Sternkopf	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang
Bachelor Ingenieurwissenschaften

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	4	Wahlpflichtfach	6.0

Voraussetzungen laut Prüfungsordnung	
Differential- und Integralrechnung, AGLA	

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
l.	LV Industrie 4.0	Pflichtfach	5.0	3V IÜ OL IS OP
Summe (Pflicht und Wahlpflicht)				180

Qualifikationsziele

Im Rahmen der Vorlesung Industrie 4.0 erwerben die Studierenden grundlegendes Verständnis für die technologischen, organisatorischen und gesellschaftlichen Aspekte der vierten industriellen Revolution. Sie benennen zentrale Begriffe wie CPS, IoT, digitale Zwillinge und RAMI 4.0 und erläutern deren Funktion (Wissen, Verstehen).

Sie wenden Industrie-4.0-Technologien gezielt auf Anwendungsfälle an, analysieren Datenflüsse und Systemarchitekturen und erkennen Wechselwirkungen zwischen Hardware, Software und Prozessen (Anwenden, Analysieren).

Darüber hinaus bewerten sie die Eignung von Technologien wie Machine Learning oder Predictive Maintenance in industriellen Szenarien hinsichtlich Effizienz, Sicherheit und Nachhaltigkeit (Bewerten).

Abschließend entwickeln sie einfache Lösungskonzepte für vernetzte Produktionssysteme und präsentieren diese adressatengerecht in geeigneter Form (Erzeugen).

Zu erbringende Prüfungsleistung / Studienleistung

KI/PA+P

Modulname:

Industrie 4.0

Modulname					Modulcode	
Industrie 4.0			BA 4 – A530			
Veranstaltungsname			Veranstaltungsart		Veranstaltungscode	
Industrie 4.0		Vorlesung/Projektarbeit/Prä sentation		ektarbeit/Prä	BA 4 – A530-VI	
Lehrende/r		Fakultät			Arbeitsaufwand	
Prof. Dr. rer. nat. Salvatore Sternkopf		Ingenieurwissenschaften und Gesundheit		schaften und	Präsenzstudium: 75 WS Eigenstudium: 105 WS	
Angebotshäufigkeit	ECTS		SWS	Sprache		
Nur im Sommersemester	6.0		5.0	deutsch		

Inhalte

- Einführung in Industrie 4.0
- Cyber-Physische Systeme und IoT
- Netzwerk- und Kommunikationstechnologien
- Datenanalyse, Cloud & Edge Computing
- Digitale Zwillinge & Simulation
- Additive Fertigung und Robotik
- Cybersecurity & Standardisierung
- Wirtschaftliche und gesellschaftliche Implikationen
- Use Cases und Zukunftsausblick

Zusätzliche Angaben	
auch PO21	

Modulname: Technische Optik

Modulname	Modulcode
Technische Optik	BA 4 – A720
Modulverantwortliche/r	Fakultät
Prof. Dr. Christoph Gerhard	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang	
Bachelor Ingenieurwissenschaften	

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	4	Pflichtfach	6.0

Voraussetzungen laut Prüfungsordnung
Dynamik, Differential- und Integralrechnung, AGLA, Dynamik

Zugehörige Lehrveranstaltungen:

	<u> </u>			
Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
l.	LV Technische Optik	Pflichtfach	5.0	4V IÜ qL 0S IP
Summe (Pflicht und Wahlpflicht)			5.0	180

Qualifikationsziele

Die Studierenden sind in der Lage

- optische Prinzipien und deren Anwendung zu erklären.
- einfache optische Systeme berechnen.
- die in der technischen Optik gebräuchlichen Lichtquellen, Bauteile und Detektoren und optischen Instrumente klassifizieren.
- systematisches Vorgehen bei der Umsetzung von Theorie in die Praxis (Vorbereitung, Durchführung und Auswertung von Experimenten) entwickeln.
- Arbeitsergebnisse vorstellen und kritisch diskutieren.
- komplexe Aufgaben der technischen Optik analysieren und lösen.

Zu erbringende Prüfungsleistung / Studienleistung

K2, E, R, P

Modulname			Modulcode		
Schwingungen / Wellen / Thermodynam		ik	ik		BA 4 – A720
Veranstaltungsname		Ve	ranstaltungsa	rt	Veranstaltungscode
Grundlagen der Plasmatech	nik	Vo	rlesung/Übur	ıg	BA 4 – A720-VI
Lehrende/r		Fak	kultät		Arbeitsaufwand
Prof. Dr. Andrea Koch			enieurwissen sundheit	schaften und	Präsenzstudium: 75 WS Eigenstudium: 105 WS
Angebotshäufigkeit	ECTS		SWS	Sprache	
nur im Sommersemester	6.0		5.0	deutsch	

Inhalte

Die Vorlesung beinhaltet folgende Themen:

- Grundlagen der Optik (Geometrische Optik, Brechung, Reflexion, Licht als elektromagnetische Welle, Fresnel-Formel, Interferenz, Kohärenz, Beugung, Polarisation)
- Eigenschaften optischer Medien (Glas, Kristalle, Kunststoffe...)
- Optische Abbildung (Matrizenoptik, Beschreibung von Strahlen, Strahltransformation, Abbildung, Abbildungsfehler, Bewertung abbildender Systeme)
- Lichtquellen, Komponenten, Detektoren und Instrumente (Laser, LED, Mikroskop, Teleskop...)

Zusätzliche Angaben auch PO21, englischer Titel "Technical Optics"

Modulname:
Grundlagen Quantentechnik

Modulname	Modulcode
Grundlagen Quantentechnik	Ba 4 – A730
Modulverantwortliche/r	Fakultät
Prof. Dr. Andrea Koch	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang	
Bachelor Ingenieurwissenschaften	

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	4	Pflichtfach	6.0

Voraussetzungen laut Prüfungsordnung

Dynamik, Schwingungen/ Wellen/Thermodynamik, Diffential- und Intefralrechnung

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
I.	LV Grundlagen Quantentechnik	Pflichtfach	5.0	3∨ IÜ 0L
				OS IP
Summe (Pflicht und Wahlpflicht)			5.0	180

Qualifikationsziele

Die Studierenden können

- einfache Quantenmechanische Systeme wie z.B. ein eindimensionales Kastenpotential oder Spin verstehen
- vertieftes physikalisches Grundwissen aus ausgewählten Gebieten der Atom- und Kernphysik problemlösend auf Fragestellungen der UV-VIS Spektroskopie und messtechnischen und medizinischen Anwendungen der Kernphysik anwenden.
- verschiedenen methodische Lösungsansätze für anwendungsbezogene physikalischtechnische Fragestellungen auf dem Gebiet der Atom- und Kernphysik erproben, vergleichen und in der Gruppe kritisch diskutieren.
- Übungsaufgaben eigenverantwortlich bearbeiten und die Ergebnisse kritisch überprüfen
- Experimente zur Quantentechnik, Atomspektroskopie und Kernphysik selbstständig aufbauen, relevante Messergebnisse generieren und theoretische Vorhersagen überprüfen.

Zu erbringende Prüfungsleistung

K2

Zu erbringende Studienleistung

LP

Modulname: Grundlagen Quantentechnik

Modulname	Modulcode		
Grundlagen der Quantentechnik		Ba 4 – A730	
Veranstaltungsname	Veranstaltungsart	Veranstaltungscode	
LV Grundlagen der Quantentechnologie	Vorlesung/Übung	Ba 4 – A730-VI	
Lehrende/r	Fakultät	Arbeitsaufwand	
Prof. Dr. Andrea Koch	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 75 WS Eigenstudium: 105 WS	

Angebotshäufigkeit	ECTS	SWS	Sprache
nur im Sommersemester	6.0	5.0	deutsch

Inhalte

Ausgewählte Kapitel der Quantentechnik sowie der Atom- und Kernphysik

- Aufbau von Atomen und Atomspektren
- Grundzüge der quantenmechanischen Beschreibung
- Aufbau der Elektronenhülle von Atomen
- Technische Anwendungen der UV-VIS Spektroskopie
- Aufbau von Atomkernen
- Radioaktive Strahlung
- wichtige Elementarteilchen mit technischen und medizinischen Anwendungen
- Energiegewinnung durch Kernspaltung und Kernfusion

Zusätzliche Angaben

auch PO21, englischer Titel "Fundamentals of quantum technology"

Modulname: Grundlagen Quantentechnik

Modulname: BWL für Ingenieure

Modulname	Modulcode
BWL für Ingenieure	Ba 4 – C010
Modulverantwortliche/r	Fakultät
Prof. Dr. rer. nat. Jan Rossel	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang

Bachelor Ingenieurwissenschaften, Technische Informatik und Robotik

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	4	Pflichtfach	6.0

Voraussetzungen laut Prüfungsordnung
keine

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
l.	LV BWL für ING	Pflichtfach	5.0	3∨ 2Ü 0L 0S 0P
Summe (Pflicht und Wahlpflicht)			5.0	180

Qualifikationsziele

Die Studierenden können

- grundlegende betriebswirtschaftliche Begriffe wie Bilanz, Kostenrechnung, Deckungsbeitrag, Investition und Liquidität definieren
- verschiedene betriebswirtschaftliche Konzepte und Prinzipien, wie z.B. das Prinzip der Gewinnmaximierung, der Produktionsfunktion und der Break-even-Analyse erklären
- die Funktionsweise von Märkten und die wichtigsten Marktformen (Monopol, Oligopol, Polypol) beschreiben
- die Grundlagen der Finanzbuchhaltung und Bilanzierung zu beschreiben
- betriebswirtschaftliche Kennzahlen zur Bewertung der Finanzlage eines Unternehmens anwenden
- einfache betriebswirtschaftliche Analysen und Berichte, z.B. zur Kosten-Nutzen-Analyse oder zur Investitionsrechnung erstellen
- betriebswirtschaftliche Problemstellungen, z.B. durch Ermittlung der Haupt-kostentreiber in einem Unternehmen oder Identifizierung von Potentialen zur Effizienzsteigerung analysieren
- verschiedener Finanzierungsformen (Eigenkapital vs. Fremdkapital) und deren Auswirkungen auf die Unternehmensbilanz unterscheiden
- betriebswirtschaftliche Strategien zur Optimierung von Geschäftsprozessen entwickeln und empfehlen
- betriebswirtschaftliche Praktiken und deren Einfluss auf langfristige Unternehmensziele kritisch bewerten
- die finanzielle Gesundheit eines Unternehmens durch komplexe Kennzahlen-analysen und Investitionsbewertungen beurteilen

BWL für Ingenieure

Modulname:

Die Studierenden

- kennen die grundlegenden Prinzipien effektiver Kommunikation und Teamarbeit
- wissen um die Bedeutung von Zeitmanagement und Selbstorganisation in der Projektarbeit
- verstehen die Rolle von Führung und Motivation innerhalb eines Teams oder Unternehmens
- können die Wichtigkeit von Interdisziplinarität und die Zusammenarbeit mit anderen Fachbereichen erklären
- können effektive Kommunikationsstrategien in unterschiedlichen beruflichen Situationen anwenden
- können kreative Problemlösungsansätze initiieren und interdisziplinär arbeiten, um betriebswirtschaftliche sowie technische Herausforderungen zu meistern
- reflektieren ihre eigenen Stärken und Schwächen im beruflichen Kontext und setzen sich Ziele zur persönlichen und beruflichen Weiterentwicklung

Zu erbringende Prüfungsleistung / Studienleistung

O[50%] + K1[50%]

Modulname: BWL für Ingenieure

Angebotshäufigkeit	ECTS	SWS	Sprache
Nur im Sommersemester	6.0	5.0	deutsch

Modulname	Modulcode		
BWL für Ingenieure		BA 4 – C010	
Veranstaltungsname	Veranstaltungscode		
BWL für Ingenieure	enieure Seminar		
Lehrende/r	Fakultät	Arbeitsaufwand	
Prof. Dr. rer. nat. Jan Rossel	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 75 WS Eigenstudium: 105 WS	

Inhalte

- Einführung in betriebswirtschaftliche Grundzusammenhänge
- Aufbau eines Betriebes
- Aufgaben der Unternehmensführung inkl. konstitutiver Entscheidungen
- Organisation und Rechtsformen von Industrieunternehmen
- Organisation der Fertigung/Produktion
- Marketing, Materialwirtschaft, Produktionswirtschaft, Beschaffung
- Investition und Finanzierung
- Grundlagen des Betriebswirtschaftliches Rechnungswesen und Jahresabschluss
- Internes Rechnungswesen mit Kosten- und Leistungsrechnung
- Controlling mit Budgetierung, Deckungsbeitragsrechnung, Plankostenrechnung, Prozesskostenrechnung
- Informationswirtschaft, interne Kontrollsysteme, Kennzahlensysteme

Zusätzliche Angaben

auch PO21, englischer Titel "Business Administration for Engineers"

Modulname:

Projekt A

Modulname	Modulcode
Project A	Ba 4 – C050
Modulverantwortliche/r	Fakultät
Studiendekan*in	Ingenieurwissenschaften und Gesundheit

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	2	Pflichtfach	6.0

Voraussetzungen laut Prüfungsordnung
alle bestandene Module bis zum 3. Semester

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
1.	LV Projekt Senior	Präsenz Eigenstudium	1.0 5.0	30 150
	(DG: 14 1)W 11 G: 14)	Eigenstudium		
Summe (Pflicht und Wahlpflicht)			5.0	180

Qualifikationsziele

Fachkompetenz

- Die Studierenden erfassen industrielle Problemstellungen in ihrem Kontext und in angemessener Komplexität entsprechend ihres Studienfortschritts. Sie analysieren kritisch, welche Einflussfaktoren zur Lösung des Problems beachtet werden müssen und beurteilen, inwiefern einzelne theoretische Modelle einen Beitrag zur Lösung des Problems leisten können.
- Die Studierenden kennen die zentralen manuellen und entwicklungstechnischen Grundfertigkeiten der jeweiligen Majors, sie können diese an praktischen Aufgaben anwenden und haben deren Bedeutung für die Prozesse in Unternehmen erfasst.
- Die Studierenden können grundsätzlich fachliche Problemstellungen des jeweiligen Majors beschreiben und fachbezogene Zusammenhänge erläutern

Methodenkompetenz

 Absolventinnen und Absolventen kennen übliche Vorgehensweisen der industriellen Praxis und können diese selbstständig umsetzen. Dabei bauen sie auf ihr theoretisches Wissen sowie ihre Berufserfahrung auf.

Modulname:

Projekt A

Personale und Soziale Kompetenz

Die Relevanz von Personaler und Sozialer Kompetenz ist den Studierenden für den reibungslosen Ablauf von industriellen Prozessen bewusst und sie können eigene Stärken und
Schwächen benennen. Den Studierenden gelingt es, aus Erfahrungen zu lernen, sie übernehmen Verantwortung für die übertragene Aufgaben, mit denen sie sich auch persönlich
identifizieren. Die Studierenden übernehmen Verantwortung im Team, integrieren und tragen
durch ihr Verhalten zur gemeinsamen Zielerreichung bei.

Übergreifende Handlungskompetenz

- Die Studierenden zeigen Handlungskompetenz, indem sie ihr theoretisches Fachwissen nutzen, um in praktischen Situationen angemessen, authentisch und erfolgreich zu agieren. Dazu gehören auch das eigenständige kritische Beobachten, das systematische Suchen alternativer Lösungsansätze sowie eine erste Einschätzung der Anwendbarkeit von Theorien für Praxis.
- Durch Unterstützung von Senior Projects oder weiterer Projekte aus niedrigeren Semestern vermitteln sie erworbene Kompetenzen weiter.

Zu erbringende Prüfungsleistung / Studienleistung

PA / PP

Modulname:

Projekt A

Modulname			Modulcode		
Projekt Senior			BA 4 - C050		
Veranstaltungsname Veranstaltungsart		rt	Veranstaltungscode		
Projekt Junior Projekt		3A 4 - C050-VI			
Lehrende/r		Fakultät		Arbeitsaufwand	
Studiendekan*in		Ingenieurwissenschaften und		schaften und	Präsenzstudium: 30 WS
		Gesundheit			Eigenstudium: 150 WS
Angebotshäufigkeit	ECTS	SWS Sprache		Sprache	
Jedes Semester	6.0		5.0	deutsch	

Inhalte

Die Studierenden erhalten eine konkrete Aufgabenstellung zur Umsetzung ingenieurswissenschaftlicher Methoden oder Erkenntnisse in die Praxis, oder zur Lösung eines Praxisproblems mit Hilfe wissenschaftlicher Methoden. Der Stand der Bearbeitung wird in regelmäßigen Abständen präsentiert und mit den Prüfern diskutiert.

- Teambuilding
- Prozessdefinition
- Definition des Untersuchungsbereichs
- Bestimmung der Durchführbarkeit
- Projektplanung und Prozessmanagement
- Literatur- und Patentrecherche
- Festlegung der entwicklungstechnischen Vorgehensweise
- Anwendung erlernter Kenntnisse und Methoden auf die spezielle Problemstellung
- Erstellung technischer Berichte und wissenschaftlicher Publikationen
- Präsentation von Projektergebnissen

Zusätzliche Angaben

auch PO21

Modulname: KI-basierte Bildanalyse

Modulname	Modulcode
KI-basierte Bildanalyse	Ba 5 – A120
Modulverantwortliche/r	Fakultät
Prof. Dr. Achim Ibenthal	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang

Bachelor Ingenieurwissenschaften, Technische Informatik und Robotik

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	5	Pflichtfach	6.0

Voraussetzungen laut Prüfungsordnung	

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
1.	LV KI-basierte Bildanalyse	Pflichtfach	5.0	3∨ 0Ü IL 0S 0P
Summe (Pflicht und Wahlpflicht)			5.0	180

Qualifikationsziele

- Differenzierung von Anwendungsproblemen und Ableitung algorithmischer Lösungswege auf dem Gebiet der KI-basierten Bildanalyse.
- Erstellung und Aufbereitung geeigneter Trainings- und Validierungsdaten.
- Programmierung und Optimierung der behandelten Lösungsverfahren.
- Anwendungsorientierte Umsetzung der Verfahren auf den Gebieten Computer Vision und Bildverständnis.

Zu erbringende Prüfungsleistung / Studienleistung

[K2 (50%)+ PA (50%)] / LP

Modulname: KI-basierte Bildanalyse

Modulname		Modulcode	
KI-basierte Bildanalyse		BA 4 – A130	
Veranstaltungsname Veranstaltungsart		Veranstaltungscode	
KI-basierte Bildanalyse	Vorlesung/Übung	BA 4 – A130-VI	
Lehrende/r	Fakultät	Arbeitsaufwand	
Prof. Dr. Achim Ibenthal	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 75 WS Eigenstudium: 105 WS	

Angebotshäufigkeit	ECTS	SWS	Sprache
Nur im	6.0	5.0	deutsch
Wintersemester			

Inhalte

- Typische Analyseprobleme, wie z.B. Segmentierung, Objekterkennung, Objektverfolgung, Klassifizierung, Bildmodellierung, Bildsynthese, Computer Vision.
- Bildvorverarbeitung mit linearen und nichtlinearen Methoden.
- KI Basismethoden, z.B. Suchbäume, Autoencoder, Faltungsnetzwerke, überwachtes, unüberwachtes und bestärkendes Lernen.
- Gradientenabstieg, Über- und Unteranpassung, Metriken zur Bewertung von Kl-Methoden,.
- Anwendung von neuronalen Faltungsnetzwerken zur Klassifizierung, Segmentierung und Objekterkennung.
- Designmethodik und Optimierung von neuronalen Netzwerken in Bezug auf Laufzeit und Fehlermaß.
- Anwendungsgebiete spezieller Netzwerke wie z.B. GANs, R-CNNs, U-Nets, etc.

Zusätzliche Angaben

auch PO21, englischer Titel: "Al-driven Image Analysis"

Modulname: Digitale Signalverarbeitung

Modulname	Modulcode
Digitale Signalverarbeitung	Ba 5 – A020
Modulverantwortliche/r	Fakultät
Prof. Dr. Achim Ibenthal	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang

Bachelor Ingenieurwissenschaften, Technische Informatik und Robotik

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	5	Pflichtfach	6.0

Voraussetzungen laut Prüfungsordnung

Differential- und Integralrechnung, AGLA, Elektrotechnik, Vertiefung Elektrotechnik

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
I.	LV Digitale Signalverarbeitung	Pflichtfach	5.0	3V IÜ 0L 0S IP
Summe (Pflicht und Wahlpflicht)			5.0	180

Qualifikationsziele

- Grundlegende Kenntnisse der Verarbeitung analoger Signale
- Analyse und Bewertung von Signalen im Zeit- und Frequenzbereich
- Verstehen der Einflussgrößen bei der Digitalisierung
- Entwurf und Beurteilung von Digitalfiltern
- Fehlerbetrachtung
- Verstehen der Theorie mit Unterstützung von Praktikumsversuchen

Zu erbringende Prüfungsleistung / Studienleistung

K2 oder M / LP

Digitale Signalverarbeitung

Modulname:

Modulname		Modulcode	
Digitale Signalverarbeitung		BA 5 – A020	
Veranstaltungsname	Veranstaltungsart	Veranstaltungscode	
Digitale Signalverarbeitung Seminar		BA 5 – A020-VI	
Lehrende/r	Fakultät	Arbeitsaufwand	
Prof. Dr. Achim Ibenthal	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 75 WS Eigenstudium: 105 WS	

Angebotshäufigkeit	ECTS	SWS	Sprache
Nur im Wintersemester	6.0	5.0	deutsch

Inhalte

- Abtastung (Abtasttheorem, S&H-Verstärker)
- Signaldarstellung im Zeit- und Frequenzbereich
- Digitale Fourier-Transformation, Fast-Fourier-Transformation
- Fensterung
- Grundlagen der z-Transformation
- Digitale Filter (FIR, IIR)
- Interpolation und Dezimation
- Anwendungsbeispiele
- Praktikumsversuche zu den Themen Abtasttheorem, FFT, Fensterung

Zusätzliche Angaben

auch PO21, englischer Titel "Digital Signal Processing"

QM und Messtechnik

Modulname:

Modulname	Modulcode
QM und Messtechnik	BA 5 – A320
Modulverantwortliche/r	Fakultät
Prof. Dr. Christian Podolsky	Ingenieurwissenschaften und Gesundheit

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	4	Wahlpflichtfach	6.0

Voraussetzungen laut Prüfungsordnung
Numerische Mathematik

Zugehörige Lehrveranstaltungen:

1					
	Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
	l.	LV QM und Messtechnik	Wahlpflichtfach	4.0	2V IÜ IL 0S 0P
	Summe (Pflicht und Wahlpflicht)			4.0	180

Qualifikationsziele

Die Studenten können:

- ausgewählte Methoden und Werkzeuge des Qualitätsmanagements wiedergeben und anwenden.
- mit den Grundbegriffen des Qualitätsmanagements argumentieren und Lösungsansätze für begrenzte Problemstellungen entwickeln.
- Bauformen und Wirkungsweisen relevanter Messmittel der produzierenden Industrie beschreiben und Messmittel problemorientiert einsetzen
- Methoden der Fehleranalyse und Messunsicherheitsbetrachtung selbständig in der Praxis anwenden

Zu erbringende Prüfungsleistung / Studienleistung

KI+KI (=K2) oder KI + BÜ

QM und Messtechnik

Modulname:

Modulname				Modulcode		
QM und Messtechnik					BA 5 – A320	
Veranstaltungsname		Veranstaltungsart		rt	Veranstaltungscode	
QM und Messtechnik Vorlesung		rlesung/Übur	ng	BA 5 – A320-VI		
Lehrende/r		Fakultät Arbeitsaufwand		Arbeitsaufwand		
Prof. Dr. Manfred Bußmann Prof. Dr. Karlfrid Osterried Prof. Dr. Christian Podolsky		Ingenieurwissenschaften und Gesundheit		schaften und	Präsenzstudium: 60 WS Eigenstudium: 120 WS	
Angebotshäufigkeit	ECTS		SWS	Sprache		
Nur im Wintersemester	6.0		4.0	deutsch		

Inhalte

- I. Einführung und Begriffe, Grundlagen des Qualitätsmanagements und der Fertigungsmesstechnik
- 2. Q7 Qualitätsmethoden
- 3. Maschinen- und Prozessfähigkeit
- 4. 8D Report
- 5. Hand- und Geräte- Messtechnik für berührungslose und taktile Messverfahren
- 6. Tolerierungsprinzipien der Geometrischen Produktspezifikation
- 7. Kalibrierung von Messinstrumenten, Messmittelüberwachung
- 8. Möglichkeit, im Rahmen des Faches das AUKOM Messtechnikzertifikat zu erwerben Optional: Eine Exkursion zum besseren Verständnis der Inhalte.

Zusätzliche Angaben auch PO21

Bachelor Ingenieurwissenschaften

Industrielle Laseranwendungen

Modulname:

Modulname	Modulcode
Industrielle Laseranwendungen	BA 5 – A520
Modulverantwortliche/r	Fakultät
Prof. Dr. Stephan Wieneke	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang	
Bachelor Ingenieurwissenschaften	

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	4	Pflichtfach	6.0

Voraussetzungen laut Prüfungsordnung

Grundlagen der Lasertechnik, Schwingungen und Wellen empfohlen, Technische Optik empfohlen

Zugehörige Lehrveranstaltungen:

	Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
	I.	LV Industrielle Laseranwendungen	Pflichtfach	5.0	4V IÜ 0L 0S IP
S	Summe (Pflicht und Wahlpflicht)			5.0	180

Qualifikationsziele

Die Studierenden sind in der Lage

- die wesentlichen Parameter eines Laserstrahls beschreiben und praktisch zu messen.
- Funktionsprinzipien verschiedener Detektoren zu charakterisieren, auszuwählen und für spezifische Messaufgaben einzusetzen.
- verschiedene optische Elemente zur Strahlformung und -führung, einzusetzen, um erforderliche Strahlprofile zu erzeugen oder zu optimieren und Laserstrahlung effektiv zu führen.
- grundlegende Mechanismen der Wechselwirkung von Laserstrahlen mit Materie, zu mathematisch zu beschreiben, um sie zur Entwicklung und Verbesserung von Laserbasierten Prozessen effektiv einzusetzen.
- Ihre Kenntnisse und Fähigkeiten in der Durchführung und Verbesserung von Lasermaterialbearbeitungsprozessen einzubringen.
- die Prinzipien und Anwendungen moderner Lasermesstechniken zu verstehen und in experimentelle und industrielle Anwendungen zu implementieren.
- ihre mathematische Kompetenz in der Fourier-Optik und Fourier-Spektroskopie zur Lösung komplexer optischer Fragestellungen anzuwenden.
- aktuelle und zukünftige Entwicklungen der Lasertechnologie zu identifizieren und evaluieren um daraus innovative Forschungsansätze abzuleiten.

Zu erbringende Prüfungsleistung / Studienleistung

K2

Industrielle Laseranwendungen

Modulname:

Modulname	Modulcode	
Industrielle Laseranwendungen	BA 5 – A520	
Veranstaltungsname	Veranstaltungsart	Veranstaltungscode
Industrielle Laseranwendungen	Vorlesung/Übung	BA 5 – A520-VI
Lehrende/r	Fakultät	Arbeitsaufwand
Prof. Dr. Stephan Wieneke	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 75 WS Eigenstudium: 105 WS

Angebotshäufigkeit	ECTS	SWS	Sprache
nur im Sommersemester	6.0	5.0	deutsch

Inhalte

Die Vorlesung beinhaltet folgende Themen:

- Beschreibung und Messung von Laserstrahlparameter (Divergenz, Wellenlänge, Strahlqualität, Polarisation, etc.)
- Detektoren (CCD, SEV, Bolometer, Pyrometer, etc.)
- Elemente zur Strahlformung und Strahlführung (Spiegel, Strahlteiler, optische Isolatoren, etc.)
- Laser-Materie-Wechselwirkungsmechanismen (Absorption, Streuung, Brechung, Reflexion)
- Mathematische Beschreibung der Gauß'schen Strahlapproximation
- Lasermaterialbearbeitung (Schneiden, Schweißen, Markieren und Oberflächenbehandlung)
- Mathematische Beschreibung der Wärmeausbreitung
- Lasermesstechnik (LIDAR, Interferometrie, LDA, LIBS, LIF, PIV, Holographie, Lasertriangulation, etc.)
- Mathematische Beschreibung zur Fourier-Optik, Fourier-Spektroskopie, etc.
- Zukünftige Trends und Anwendungen (medizinische Anwendungen, Photovoltaik, Quantencomputing, etc.)

Zusätzliche Angaben

auch PO21, englischer Titel "industrial laser applications"

Modulname:

Bachelor Ingenieurwissenschaften

Batterie- und Brennstoffzellentechnik

Modulname	Modulcode
Batterie- und Brennstoffzelentechnik	BA 5 – A620
Modulverantwortliche/r	Fakultät
Prof. Dr. rer. nat. Salvatore Sternkopf	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang	
Bachelor Ingenieurwissenschaften	

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	5	Wahlpflichtfach	6.0

Voraussetzungen laut Prüfungsordnung
keine

Zugehörige Lehrveranstaltungen:

-		<u> </u>			
	Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
	l.	LV Werkstoffkunde und Chemie	Pflichtfach	5.0	3V IÜ IL 0S 0P
ı	Sumi	5.0	180		

Qualifikationsziele

Die Studierenden können

- den Aufbau und die Funktionsweisevon Batterie- und Brennstoffzellensystemen beschreiben, sowie deren Hauptkomponenten (Anode, Kathode, Separator, Elektrolyt, Leitsalz) erläutern
- typische Materialien für Li-Ionen-Batterien und Brennstoffzellen benennen und deren Einsatz hinsichtlich Effizienz, Sicherheit und Nachhaltigkeit bewerten
- die Prozessschritte der Fertigung von Elektroden, Zellen, Modulen und Batteriesystemen darstellen, sowie relevante Prüfverfahren in der Produktion einordnen
- übergreifende Themen berücksichtigen, darunter chemische, elektrische und funktionale Sicherheit der Grundaufbau von Elektromotoren und das Recycling elektrochemischer Energiesysteme
- den industriellen Kontext praxisbezogen nachvollziehen, z. B. durch die Teilnahme an einer Exkursion zu einem Batterie-Produktionsstandort

Zu erbringende Prüfungsleistung / Studienleistung

K2 / LP

Bachelor Ingenieurwissenschaften Batterie- und Brennstoffzellentechnik

Modulname:

Modulname			Modulcode			
Batterie- und Brennstoffzellentechnik					BA 5 – A620	
Veranstaltungsname		Veranstaltungsart		rt	Veranstaltungscode	
Batterie- und Brennstoffzell technik	en-	Vorlesung/Übung		ng	BA 5 – A620-VI	
Lehrende/r Fakı		ultät		Arbeitsaufwand		
Prof. Dr. rer. nat. Salvatore Ste	rnkopf	Ingenieurwissenschaften und Gesundheit		schaften und	Präsenzstudium: 75 WS Eigenstudium: 105 WS	
Angebotshäufigkeit	ECTS		SWS	Sprache		

Inhalte

- Aufbau und Funktionsweise von Batterie- und Brennstoffzellen, -modulen und systemen
- Typische Anoden- und Kathodenmaterialien für Li-Ionen-Batterien und Brennstoffzellen
- Elektrolyte und Leitsalze
- Separatoren
- Verfahrens- und Anlagentechnik zur Elektroden-, Zell- und Modul- und Batteriesystemfertigung
- Prüfverfahren in der Fertigung
- Querschnittsthemen: chemische-, elektrische-, funktionale Sicherheit, Grundaufbau von Elektromotoren, Recycling

Eine Exkursion zu CATT (Erfurt) oder VW SZ/KS zum besseren Verständnis der Produktionsprozesse wird angestrebt.

Zusätzliche Angaben

auch PO21, englischer Titel "Battery- and Fuel Cell Technologies"

Modulname:

Projekt B

Modulname	Modulcode
Project B	Ba 5 – C050
Modulverantwortliche/r	Fakultät
Studiendekan*in	Ingenieurwissenschaften und Gesundheit

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	2	Pflichtfach	6.0

Voraussetzungen laut Prüfungsordnung
alle bestandene Module bis zum 3. Semester

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
1.	LV Projekt Senior	Präsenz Eigenstudium	1.0 5.0	30 150
	(DG: 14 1)W 11 G: 14)	Eigenstudium	5.0	
Summe (Pflicht und Wahlpflicht)				180

Qualifikationsziele

Fachkompetenz

- Die Studierenden erfassen industrielle Problemstellungen in ihrem Kontext und in angemessener Komplexität entsprechend ihres Studienfortschritts. Sie analysieren kritisch, welche Einflussfaktoren zur Lösung des Problems beachtet werden müssen und beurteilen, inwiefern einzelne theoretische Modelle einen Beitrag zur Lösung des Problems leisten können.
- Die Studierenden kennen die zentralen manuellen und entwicklungstechnischen Grundfertigkeiten der jeweiligen Majors, sie können diese an praktischen Aufgaben anwenden und haben deren Bedeutung für die Prozesse in Unternehmen erfasst.
- Die Studierenden können grundsätzlich fachliche Problemstellungen des jeweiligen Majors beschreiben und fachbezogene Zusammenhänge erläutern

Methodenkompetenz

 Absolventinnen und Absolventen kennen übliche Vorgehensweisen der industriellen Praxis und können diese selbstständig umsetzen. Dabei bauen sie auf ihr theoretisches Wissen sowie ihre Berufserfahrung auf.

Modulname:

Projekt B

Personale und Soziale Kompetenz

• Die Relevanz von Personaler und Sozialer Kompetenz ist den Studierenden für den reibungslosen Ablauf von industriellen Prozessen bewusst und sie können eigene Stärken und Schwächen benennen. Den Studierenden gelingt es, aus Erfahrungen zu lernen, sie übernehmen Verantwortung für die übertragene Aufgaben, mit denen sie sich auch persönlich identifizieren. Die Studierenden übernehmen Verantwortung im Team, integrieren und tragen durch ihr Verhalten zur gemeinsamen Zielerreichung bei.

Übergreifende Handlungskompetenz

- Die Studierenden zeigen Handlungskompetenz, indem sie ihr theoretisches Fachwissen nutzen, um in praktischen Situationen angemessen, authentisch und erfolgreich zu agieren. Dazu gehören auch das eigenständige kritische Beobachten, das systematische Suchen alternativer Lösungsansätze sowie eine erste Einschätzung der Anwendbarkeit von Theorien für Praxis.
- Durch Unterstützung von Senior Projects oder weiterer Projekte aus niedrigeren Semestern vermitteln sie erworbene Kompetenzen weiter.

Zu erbringende Prüfungsleistung / Studienleistung

PA / PP

Modulname:

Projekt B

Modulname			Modulcode		
Projekt Senior			BA 5 - C050		
Veranstaltungsname Veranstaltungsart		rt	Veranstaltungscode		
Projekt Junior	t Junior Projekt		BA 5 - C050-VI		
Lehrende/r	ende/r Fakultät			Arbeitsaufwand	
Studiendekan*in		Ingenieurwissenschaften und		schaften und	Präsenzstudium: 30 WS
		Gesundheit			Eigenstudium: 150 WS
Angebotshäufigkeit	ECTS	SWS Sprache		Sprache	
Jedes Semester	6.0		5.0	deutsch	

Inhalte

Die Studierenden erhalten eine konkrete Aufgabenstellung zur Umsetzung ingenieurswissenschaftlicher Methoden oder Erkenntnisse in die Praxis, oder zur Lösung eines Praxisproblems mit Hilfe wissenschaftlicher Methoden. Der Stand der Bearbeitung wird in regelmäßigen Abständen präsentiert und mit den Prüfern diskutiert.

- Teambuilding
- Prozessdefinition
- Definition des Untersuchungsbereichs
- Bestimmung der Durchführbarkeit
- Projektplanung und Prozessmanagement
- Literatur- und Patentrecherche
- Festlegung der entwicklungstechnischen Vorgehensweise
- Anwendung erlernter Kenntnisse und Methoden auf die spezielle Problemstellung
- Erstellung technischer Berichte und wissenschaftlicher Publikationen
- Präsentation von Projektergebnissen

Zusätzliche Angaben

auch PO21

Modulname:
Bachelorpraxisprojekt

Modulname	Modulcode
Bachelorpraxisprojekt	Ba 6 – C010
Modulverantwortliche/r	Fakultät
Studiendekan*in	Ingenieurwissenschaften und Gesundheit

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	6	Pflichtfach	15.0

Voraussetzungen laut Prüfungsordnung
keine

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
1.	LV Bachelorpraxisprojekt	Pflichtfach	4.0	0V 0Ü 0L 0S 4P
Summe (Pflicht und Wahlpflicht)			4.0	450

Qualifikationsziele

Aufbauend auf dem in den vorangegangenen Semestern erworbenen Fachwissen wenden die Studierenden ihr theoretisches Wissen auf praxisnahe ingenieurwissenschaftliche Aufgaben an. Unter qualifizierter Anleitung analysieren und bearbeiten sie Problemstellungen aus dem beruflichen Umfeld und entwickeln praxisorientierte Lösungsansätze (Anwenden, Analysieren, Erzeugen).

Darüber hinaus reflektieren sie wirtschaftliche, organisatorische, rechtliche und gesellschaftliche Rahmenbedingungen des beruflichen Handelns und bewerten deren Bedeutung im Kontext ingenieurbezogener Tätigkeiten (Verstehen, Bewerten).

Ziel des Praxisprojekts ist es, die Verbindung zwischen wissenschaftlicher Ausbildung und realer Berufspraxis zu stärken und die Studierenden zur selbstständigen und verantwortungsbewussten Anwendung ihres Fachwissens in betrieblichen Zusammenhängen zu befähigen.

Zu erbringende Prüfungsleistung / Studienleistung

EA, ST, E, EDRP

Modulname: Bachelorpraxisprojekt

Modulname				Modulcode			
Bachelorpraxisprojekt					BA 6 - C010		
Veranstaltungsname		Veranstaltungsart		rt	Veranstaltungscode		
Bachelorpraxisprojekt					BA 6 - C010-VI		
Lehrende/r		Fakultät			Arbeitsaufwand		
Studiendekan*in	:udiendekan*in		enieurwissen	schaften und	Präsenzstudium: 60 WS		
		Gesundheit			Eigenstudium: 390 WS		
Angebotshäufigkeit	ECTS	SWS Sprache		Sprache			
Jedes Semester	15.0		4.0	deutsch			

Inhalte

- Einführung in die Projektarbeit
- eine mindestens 8-wöchige qualifizierte berufspraktische Tätigkeit auf einem
- zum Studiengang passenden Gebiet.Studienleistung über eine ingenieursnahe Aufgabe aus der Praxisphase

Zusätzliche Angaben	
auch PO21	

Bachelorabschlussarbeit und

Kolloquium

Modulname:

Modulname	Modulcode
Bachelorabschlussarbeit	Ba 6 – C020
Modulverantwortliche/r	Fakultät
Studiendekan*in	Ingenieurwissenschaften und Gesundheit

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	6	Pflichtfach	15.0

Voraussetzungen laut Prüfungsordnung	
keine	

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
1.	LV Bachelorabschlussarbeit und Kolloquium	Pflichtfach	2.0	0V 0Ü 0L 0S 2P
Sum	2.0	360		

Qualifikationsziele

Im Rahmen der Abschlussarbeit analysieren die Studierenden eigenständig eine komplexe Problemstellung, wenden geeignete wissenschaftliche Methoden an und entwickeln darauf basierend begründete Lösungsansätze innerhalb einer vorgegebenen Frist (Analysieren, Anwenden, Erzeugen).

Zu erbringende Prüfungsleistung / Studienleistung

Α

Bachelorabschlussarbeit und Kolloquium

Modulname				Modulcode		
Bachelorabschlussarbeit und Kolloquiu					BA 6 - C020	
Veranstaltungsname		Veranstaltungsart		rt	Veranstaltungscode	
Bachelorabschlussarbeit und Kolloquium					BA 6 - C020-VI	
Lehrende/r		Fakultät			Arbeitsaufwand	
Studiendekan*in		Ingenieurwissenschaften und Gesundheit		schaften und	Präsenzstudium: 30 WS Eigenstudium: 330 WS	
Angebotshäufigkeit	ECTS	SWS Sprache		Sprache		
Jedes Semester	15.0		2.0	deutsch		

Inhalte

- Ingenieursnahe Aufgabe aus einem Arbeitsgebiet in fachlicher Nähe zum Studiengang

Zusätzliche An	gaben
auch PO21	

Bachelor Ingenieurwissenschaften

Modulname: Bachelorabschlussarbeit und

Kolloquium

Modulname	Modulcode
Kolloquium	Ba 6 – C030
Modulverantwortliche/r	Fakultät
Studiendekan*in	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang	
Bachelor Ingenieurwissenschaften	

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	6	Pflichtfach	15.0

Voraussetzungen laut Prüfungsordnung			
keine			

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
1.	LV Kolloquium	Pflichtfach	2.0	0∨ 0Ü 0L 2S 0P
Sum	2.0	90		

Qualifikationsziele

Im Kolloquium präsentieren die Studierenden die Ergebnisse ihrer Arbeit strukturiert und adressatengerecht vor Fachpublikum und diskutieren diese kritisch im fachlichen Kontext (Darstellen, Bewerten, Argumentieren).

Zu erbringende Prüfungsleistung / Studienleistung

KQ

Bachelorabschlussarbeit und Kolloquium

Modulname	Modulcode						
Kolloquium	BA 6 - C030						
Veranstaltungsname	Veranstaltungsart		rt	Veranstaltungscode			
Kolloquium					BA 6 - C030-VI		
Lehrende/r		Fakultät			Arbeitsaufwand		
Studiendekan*in		Ingenieurwissenschaften und		schaften und	Präsenzstudium: 30 WS		
			sundheit		Eigenstudium: 60 WS		
Angebotshäufigkeit	ECTS		SWS	Sprache			
Jedes Semester 15.0			2.0	deutsch			

Inhalte

- Ingenieursnahe Aufgabe aus einem Arbeitsgebiet in fachlicher Nähe zum Studiengang

Zusätzliche Angaben	
auch PO21	

Modulhandbuch

Pflichtmodule Für den Studiengang

"Technische Informatik und Robotik"

HAWK Hochschule für angewandte Wissenschaft und Kunst Fachhochschule Hildesheim/Holzminden/Göttingen Fakultät Ingenieurwissenschaften und Gesundheit

Modulhandbuch 2025

Pflichtmodule für den Studiengang "Technische Informatik und Robotik"

Erläuterungen / Abkürzungen:		
<u>Prüfungsformen</u> :	Zeitumfang:	BA = Bachelor
A = Abschlussarbeit	s. Modulblatt	
BÜ = Berufspraktische Übungen	(xh)	MA = Master
E = Entwurf	90 – 180h	SWS = Semesterwochenstunden
EA = Experimentelle Arbeit	120 – 300h	Präsenz = Präsenzzeit in Stunden
EDRP = Erstellung und Dokumentation von	xh	Eigenst. = Eigenstudium in Stunden
Rechnerprogrammen. Die Bearbeitungszeit als		Cr. = Credits (ECTS-Punkte)
Studienleistung legt die		SL = Studienleistung
Prüferin oder der Prüfer fest, bei Nichtfestlegung gilt ein		PL = Prüfungsleistung
Semester.		PVL = Vorleistung als Voraussetzung
EX = Exkursion	30-60h	zur Zulassung zur Prüfung
K = Klausur (xh)	s. Modulblatt	
FS = Fallstudie	60 – 120h	
H = Hausarbeit	60 – 120h	
KQ = Kolloquium	30h Vorbereitung, 0.5h Prüfung	
LP = Laborpraktikum	90 – 150h	
M = Mündliche Prüfung	30h Vorbereitung, 0.5h Prüfung	
OB = Open Book	xh	
PA = Projektarbeit	90 – 180h	
PF = Portfolio	60 – 120h	
PR = Präsentation	30 – 60h	
R = Referat	30 – 60h	
SE = Systementwurf	120 – 180h	
ST = Studienarbeit	90 -180h	
xh = Bearbeitungszeit in x Zeitstunden		Die Modulprüfungen können von der
[] = Liste möglicher Prüfungsformen, Gewichtung und Auswahl (+ und / oder) wird zu Semester- beginn vom Dozenten bekanntgegeben.		Prüfungskommission durch andere Prüfungsarten ersetzt werden (siehe Prüfungsordnung – allgemeiner Teil).

Modulhandbuch 2025

Pflichtmodule für den Studiengang "Technische Informatik und Robotik"

Im Folgenden ist der Studienablauf des Studiengangs "Technische Informatik und Robotik" dargestellt. Die bekannten Common-, Basic und Advanced-Module stimmen hierbei mit den Modulen des Studiengangs "Ingenieurwissenschaften" überein. Es werden daher an dieser Stelle nur die ergänzenden Module Autonome Systeme, Antriebs- und Steuerungstechnik, sowie Embedded Systems aufgelistet.

Bachelor Technische Informatik und Robotik, Default, Studienbeginn WiSe

1	2	3	4	5	6
WiSe	SoSe	WiSe	SoSe	WiSe	SoSe
Integral- und Differentialrechnung	Analytische Geometrie und lineare Algebra	Regelungstechnik	BWL für Ing.	Individuelles Profilstudium (IPS)	
Informatik	Vertiefung Informatik _{Basic}	Numerische Mathematik	Hard-& Software- Entwurfsmuster Advanced	Digitale Signal- verarbeitung Advanced	Bachelor Abschlussarbeit
Elektrotechnik	Grundlagen Elektronik _{Basic}	Mikroprozessor- technik _{Basic}	Halbleiter und Digitalelektronik Advanced	KI-basierte Bildanalyse ^{Advanced}	
Dynamik	Technische Informatik _{Basic}	Algorithmen und Datenstrukturen Basic	Autonome Systeme Advanced	Embedded Systems Advanced	Bachelor Projektarbeit
Einführung in	Rechnernetze und	Mess- und Sensortechnik	Antriebs- und	Wissenschaftliches Arbeiten	
die Robotik	Betriebssysteme Basic	Sensortechnik Basic	Steuerungstechnik Advanced	Technisches Englisch	

Modulbezeichnung:	Einführung in die Robotik Kurzbeschreibung: BA 1 - 081						
Art des Studiengangs:	Bachelor	Bachelor					
Semester:	1						
Modulverantwortliche(r):	Prof. Dr.	rer. nat. Thom	nas Linkug	gel			
Dozent(in):	Prof. Dr.	rer. nat. Thom	nas Linkug	gel; Prof. Dr. I	ng. Christia	an Podolsky	
Sprache:	deutsch						
Zuordnung zum Curriculum	Pflichtmo	odule geeigne	t für den S	Studiengang	bzw. Schwe	erpunkt:	
Lehrform / SWS:	SWS gesa	mt: 6					
	davon:	Vorlesung	Übung	Praktikum	Seminar	Projekt	
		3	1	1	0	1	
Arbeitsaufwand	Std. gesa	mt: 180	davon E	igenst.: 105	davon	Präsenz: 75	
Credits: Voraussetzungen:	6 keine						
	 Überblick der Automation und der Robotik: Anwendungsgebiete der Robotik, Roboterarme und kollaborierende Roboter, Beschreibung von seriellen Robotersystemen, Gelenktypen, Sensoren und Aktoren, Roboter-Kinematik, Vorwärts- und Rückwärtskinematik, Simulation und Modellbildung Einführung in das Robot Operating System (ROS) 						
Inhalt: Studien-, Prüfungsleistung:	In diesem Modul wird den Studierenden eine Übersicht der Studieninhalte gegeben. Anknüpfungspunkte an die Automatisierungstechnik, an den Maschinenbau (CIM) und an den Medizintechniker bzw. an den GCG (Robotik in der Medizin und Pflege) sollen aufgezeigt werden. Hierzu werden die Grundkonzepte und Funktionsweisen von stationären Robotern analysiert. Theoretische und technologische Grundlagen werden zudem in den Bereichen Steuerung, Kinematik Simulation von stationären Robotern erarbeitet.						

Modulbezeichnung:	Autonome Systeme					Kurzbeschreibung: Ba 4 - A040	
Art des Studiengangs:	Bachelor						
Semester:	4						
Modulverantwortliche(r):	Prof. Dr.	rer. nat. Thom	nas Linkug	gel			
Dozent(in):	Prof. Dr.	rer. nat. Thom	nas Linkug	gel			
Sprache:	deutsch						
Zuordnung zum Curriculum	Pflichtmo	odule geeignet	für den S	Studiengang	bzw. Schwe	erpunkt:	
Lehrform / SWS:	SWS gesa	amt: 6					
	davon:	Vorlesung	Übung	Praktikum	Seminar	Projekt	
		3	1	1	0	1	
Arbeitsaufwand	Std. gesa	mt: 180	davon E	igenst.: 105	davon	Präsenz: 75	
Credits:	6						
Voraussetzungen:	Einführu	ng in die Robo	tik, Math	ematik 1 und	1 2		
	 Mobile Roboter Aufbau, Kinematik, Sensoren, Lokalisationsverfahren, Navigation 						
Inhalt:	In diesem Modul wird den Studierenden eine Übersicht autonomer Systeme gegeben. State of the Art Sensoren und Messverfahren, die sowohl im autonomen Fahren, der Robotik oder in der Medizin zum Einsatz kommen, werden vorgestellt und theoretische Grundlagen dazu erarbeitet. Grundkonzepte und Funktionsweisen von • Laserscanner, • Taktile Sensoren, • Bildgebende Sensoren (RGB, Multi-, Hyperspectralsensoren) werden erarbeitet und mit Bezug auf Lokalisation und Navigation mobiler Systeme angewendet. Aufbauend auf den Kenntnissen aus dem Modul Einführung in die Robotik werden verschiedene Applikationen im Robot Operating System eigenständig von den Studierenden erarbeitet-						
Studien-, Prüfungsleistung:	PA(PL), L	S (SL)					

Antriebs- und Steuerungstechnik

Modulname:

Bachelor Ingenieurwissenschaften

Modulname	Modulcode
Antriebs- und Steuerungstechnik	Ba 4 – A050
Modulverantwortliche/r	Fakultät
Prof. Dr. Jens Peter Kärst	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang	
Bachelor Ingenieurwissenschaften	

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	4	Advanced	6.0

Voraussetzungen laut Prüfungsordnung Elektrotechnik, Elektronik, Informatik, Dynamik

Zugehörige Lehrveranstaltungen:

	8 8			
Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
I.	LV Antriebstechnik	Pflicht: TI+R	2.5	1.5V 0.5Ü 0.5L
2.	LV Steuerungstechnik	Pflicht: TI+R	2.5	1.5∨ 0.5Ü 0.5L
Summe (Pflicht und Wahlpflicht)		5.0	180	

Qualifikationsziele

Die Studierenden können ihr Wissen auf die

- elektromechanische Energiewandlung sowie auf die
- ausgewählter elektrischer Maschinen sowie
- Speicherprogrammierbarer Steuerungen analysieren und erklären.

Sie können allein und in der Arbeitsgruppe Komponenten der Antriebs- und Steuerungstechnik sowie deren Bauteile und Schaltungstopologien angepasst einsetzen.

Zu erbringende Prüfungsleistung

KI (50%) + KI (50%)

Zu erbringende Studienleistung

LP

Antriebs- und Steuerungstechnik

Modulname:

Bachelor Ingenieurwissenschaften

Modulname		Modulcode
Antriebs- und Steuerungstechnik		Ba 4 – A050
Veranstaltungsname	Veranstaltungsart	Veranstaltungscode
LV Antriebstechnik	Vorlesung/ Übung/Labor	Ba 4 – A050 – VI
Lehrende/r	Fakultät	Arbeitsaufwand
Prof. Dr. Jens Peter Kärst	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 40WS Eigenstudium: 50WS

Angebotshäufigkeit	ECTS	SWS	Sprache
nur im Sommersemester	3.0	2.5	deutsch

Inhalte

- Komponenten der elektromechanischen Energiewandlung
- Gleich-, Wechsel- und Drehstrommaschinen
- Leistungselektronik, Bauteile und Ansteuerung
- Antriebssimulation
- Praktische Laborversuche

Zusätzliche Angaben	
auch PO21	

Modulname:

Bachelor Ingenieurwissenschaften	Antriebs- und Steuerungstechnik

Modulname		Modulcode
Antriebs- und Steuerungstechnik		Ba 4 – A0xx
Veranstaltungsname	Veranstaltungsart	Veranstaltungscode
LV Steuerungstechnik	Vorlesung/Übung	Ba 4 – A0xx – V2
Lehrende/r	Fakultät	Arbeitsaufwand
Prof. Dr. Thomas Linkugel	Ingenieurwissenschaften und	Präsenzstudium:40WS
	Gesundheit	Eigenstudium: 50VVS

Angebotshäufigkeit	ECTS	SWS	Sprache
nur im Sommersemester	3.0	2.5	deutsch

Inhalte

- Ebenen eines zu automatisierenden Prozesses
- AutomatisierungsgeräteAufbau, Arbeitsweise und Programmierung von SPS
- Praktische Laborversuche

Zusätzliche Angaben	
auch PO21	

Modulname: Embedded Systems

Modulname	Modulcode
Embedded Systems	Ba 4 – A040
Modulverantwortliche/r	Fakultät
Prof. Dr. Thomas Linkugel	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang	
Bachelor Ingenieurwissenschaften	

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	5	Pflichtfach	6.0

Voraussetzungen laut Prüfungsordnung Informatik I, Informatik 2, Mikroprozessortechnik

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
1.	LV Embedded Systems	Wahlpflicht	5.0	3V IÜ 0L 0S IP
Summe (Pflicht und Wahlpflicht)			5.0	180

Qualifikationsziele

Die Studierenden erlernen die Methoden und die theoretischen Kenntnisse:

- der Einsatzgebiete von Embedded Systems,
- der Konzepte und der Grundelemente,
- des Aufbaus und der Unterschiede von Betriebssystemen für Embedded Systems,
- der Eigenschaften und des Einsatzes von

Echtzeitbetriebssystemen,

- der Programmierung in C und C++,
- der Eigenschaften und Nutzung von verschiedenen Kommunikationsschnittstellen,
- der Sensordatenerfassung und -verarbeitung.

Zu erbringende Prüfungsleistung

K2 oder (PA+R) - jeweils 50%

Zu erbringende Studienleistung

LP

Modulname: Embedded Systems

Modulname		Modulcode		
Embedded Systems		Ba 4 – A040		
Veranstaltungsname	Veranstaltungsart	Veranstaltungscode		
LV Embedded Systems	Vorlesung/Übung	Ba 4 – A040 -VI		
Lehrende/r	Fakultät	Arbeitsaufwand		
Prof. Dr. Thomas Linkugel	Ingenieurwissenschaften un Gesundheit	d Präsenzstudium: 75 WS Eigenstudium: 105 V		

Angebotshäufigkeit	ECTS	SWS	Sprache
nur im Wintersemester	6.0	5.0	deutsch

Inhalte

In diesem Modul werden den Studierenden die Grundlagen im Bereich der Embedded Systems vermittelt. Dazu werden die Grundkonzepte und die Funktionsweise von eingebetteten Systemen erläutert.

Neben der Hardware ist ebenfalls die Software dieser Systeme ein elementarer Bestandteil der Vorlesung. Es werden in diesem Kontext verschiedene Betriebssysteme und deren Unterschiede diskutiert. Im Besonderen wird auf Echtzeitbetriebssysteme eingegangen. Über die Methoden und theoretischen Kenntnisse hinaus soll ebenfalls der praktische Umgang mit zwei unterschiedlichen Embedded Systems erlernt werden.

Zusätzliche Angaben

auch PO21, englischer Titel "Embedded Systems"