Modulhandbuch

Wahlpflichtmodule Für den Studiengang

"Ingenieurwissenschaften"

HAWK Hochschule für angewandte Wissenschaft und Kunst Fachhochschule Hildesheim/Holzminden/Göttingen Fakultät Ingenieurwissenschaften und Gesundheit

Modulhandbuch 2025

Wahlpflichtmodule für den Studiengang "Ingenieurwissenschaften"

Erläuterungen / Abkürzungen:		
<u>Prüfungsformen</u> :	Zeitumfang (V):	BA = Bachelor
A = Abschlussarbeit	s. Modulblatt	
BÜ = Berufspraktische Übungen	(xh)	MA = Master
E = Entwurf	90 – 180h	SWS = Semesterwochenstunden
EA = Experimentelle Arbeit	120 – 300h	Präsenz = Präsenzzeit in Stunden
EDRP = Erstellung und Dokumentation von	xh	Eigenst. = Eigenstudium in Stunden
Rechnerprogrammen. Die		Cr. = Credits (ECTS-Punkte)
Bearbeitungszeit als Studienleistung legt die		SL = Studienleistung
Prüferin oder der Prüfer fest, bei Nichtfestlegung gilt ein		PL = Prüfungsleistung
Semester. EX = Exkursion	30-60h	PVL = Vorleistung als Voraussetzung zur Zulassung zur Prüfung
K = Klausur (xh)	s. Modulblatt	V = Vorbereitung
FS = Fallstudie	60 – 120h	P = Prüfung
H = Hausarbeit	60 – 120h	
KQ = Kolloquium	30h 0.5h P	
LP = Laborpraktikum	90 – 150h	
M = Mündliche Prüfung	30h 0.5h P	
OB = Open Book	xh	
PA = Projektarbeit	90 – 180h	
PF = Portfolio	60 – 120h	
PR = Präsentation	30 – 60h, 0.5h P	
R = Referat	30 – 60h, 0.5h P	
SE = Systementwurf	120 – 180h	
ST = Studienarbeit	90 -180h	
xh = Bearbeitungszeit in x Zeitstunden		Die Modulprüfungen können von der
[] = Liste möglicher Prüfungsformen, Gewichtung und Auswahl (+ und / oder) wird zu Semester- beginn vom Dozenten bekanntgegeben.		Prüfungskommission durch andere Prüfungsarten ersetzt werden (siehe Prüfungsordnung – allgemeiner Teil).

Modulname	Modulcode
Videotechnik	Ba – AW100
Modulverantwortliche/r	Fakultät
Prof. Dr. Achim Ibenthal	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang	
Ingenieurwissenschaften	

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	4	Wahlpflicht	3.0

Voraussetzungen laut Prüfungsordnung

Grundkenntnisse in linearer Algebra und Kommunikationstechnik sind von Vorteil, aber nicht zwingend erforderlich für das Verständnis des Moduls

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname		SWS	Workload
I.	LV Videotechnik		2.0	2V 0Ü
				0L 0S 0P
Sum	Summe (Pflicht und Wahlpflicht)		2.0	90

Qualifikationsziele

Es wird ein Querschnitt moderner Videotechnik vermittelt, der dazu befähigt, Videoprojekte und Anwendungen erfolgreich zu bearbeiten. Sie kennen die Eigenschaften des menschl. Sehens und wissen, wie sie techn. Systeme spezifizieren müssen. Durch die Kenntnis der Grdl. analoger und digitaler Videosignale wissen

sie mit Standards umzugehen und sie für versch. techn. Systeme anzuwenden, wie Rundfunk, Videotelefonie und Streaming. Abgerundet werden die Kenntnisse durch die Vermittlung der Grundlagen zur Videoproduktion. Die Stud. können damit eigene Videoproduktionen profesionell durchführen.

Zu erbringende Prüfungsleistung / Studienleitstung

PR oder ST / -

Modulname		Modulcode		
Videotechnik		Ba - AW100		
Veranstaltungsname	Veranstaltungsart	Veranstaltungscode		
LV Videotechnik	Vorlesung/Übung	Ba – AWI00-VI		
Lehrende/r	Fakultät	Arbeitsaufwand		
Prof. Dr. Achim Ibenthal	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 30 WS Eigenstudium: 60 WS		

Angebotshäufigkeit	ECTS	SWS	Sprache
in jedem Semester	3.0	2.0	deutsch

- Kenngrößen der Videotechnik
- Visuelle Wahrnehmung
- Farbmetrik
- Analoge Farbfernsehsysteme
- Digitale Videoverarbeitung
- Digitaler Fernsehrundfunk DVB
- Film- und Videoproduktion

Zusätzliche Angaben

auch PO21, englischer Titel "Video Technologies", auch Belegbar in den Studiengängen: Phl, MeT, El-A, El-I

Modulname	Modulcode
Oberflächentechnik	Ba - AW101
Modulverantwortliche/r	Fakultät
Prof. Dr. Manfred Bußmann	Ingenieurwissenschaften und Gesundheit

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	5	Wahlpflicht	3.0

Voraussetzungen laut Prüfungsordnung
Maschinenbau 2, Fertigung 2

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname		SWS	Workload
1.	LV Oberflächentechnik		2.0	2V 0Ü
				0L 0S 0P
Summe (Pflicht und Wahlpflicht)		2.0	90	

Qualifikationsziele

Die Studierenden können:

- Verschleißschutzschichten und deren Herstellungsverfahren analysieren und diskutieren sowie deren Anforderungsprofile darstellen.
- systematisch geeignete Prozesse für die Oberflächentechnik auswählen und Problemlösungswege entwickeln.
- die Randschicht- und Beschichtungsverfahren werkstoff- und prozesstechnisch bewerten und in ein potenzielles Unternehmensumfeld übertragen.

Zu erbringende Prüfungsleistung /Studienleistung

ΚI

Modulname		Modulcode		
Oberflächentechnik		Ba – AWI0I		
Veranstaltungsname	Veranstaltungsart	Veranstaltungscode		
LV Oberflächentechnik	Vorlesung/Übung	Ba – AWIOI-VI		
Lehrende/r	Fakultät	Arbeitsaufwand		
Prof. Dr. Manfred Bußmann	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 30 WS Eigenstudium: 60 WS		

Angebotshäufigkeit	ECTS	SWS	Sprache
nur im Wintersemester	3.0	2.0	deutsch

- Randschichtverfahren und Beschichtungsprozesse
- Relevante Werkstoffe für Fertigungstechnik und Anwendungen
- Bewertung der Werkstoffe und Prozesse hinsichtlich des technische Potenzials, der Produktivität, Wirtschaftlichkeit, Umweltverträglichkeit, Flexibilität und Qualität
- Einzelprozesse und verkettete Systeme

Zusätzliche Angaben

auch PO21, englischer Titel "Surface Technology", Belegbar auch in den Studiengängen: Phl, PMB-P

Modulname	Modulcode
Kollaborierende Roboter	Ba – AW102
Modulverantwortliche/r	Fakultät
Prof. Dr. Christian Podolsky	Ingenieurwissenschaften und Gesundheit

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	5	Wahlpflicht	3.0

Voraussetzungen laut Prüfungsordnung	

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname		SWS	Workload
1.	LV Kollaborierende Roboter		2.0	0V IÜ
				OL OS IP
Sumi	Summe (Pflicht und Wahlpflicht)		2.0	90

Qualifikationsziele

- Die Studierenden sind mit dem kollaborierenden Robotersystem von Universal Robots vertraut
- Die Studierenden können das System einschalten, Greifer einprogrammieren, das System manuell bedienen und erste Programme schreiben und ausführen lassen
- Die Studierenden können Sicherheitsebenen definieren und sie sind mit den grundlegenden Sicherheitsanforderungen des Systems vertraut
- Die Studierenden können die Potenziale und Risiken von kollaborierenden Robotersystemen einschätzen

Zu erbringende Prüfungsleistung / Studienleistung

KI oder BÜ

Modulname		Modulcode		
Kollaborierende Roboter		Ba – AW102		
Veranstaltungsname	Veranstaltungsart	Veranstaltungscode		
LV Kollaborierende Roboter Übung		Ba – AWI02-VI		
Lehrende/r	Fakultät	Arbeitsaufwand		
Prof. Dr. Christian Podolsky	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 30 WS Eigenstudium: 60 WS		

Angebotshäufigkeit	ECTS	SWS	Sprache
nur im Wintersemester	3.0	2.0	deutsch

- Automatisierung mit Robotern und Mensch-Roboter-Kollaboration
- Sicherheitsbetrachtung von Robotersystemen
- Erlernen der Bedienung und Erstellen von ersten einfachen Programmen
- Einrichtung eines kollaborierenden Roboters

Optional: Exkursion zum besseren Verständnis der Inhalte

Zusätzliche Angaben

auch PO21, auch belegbar in den Studiengängen Medizintechnik, Ingenieurinformatik und Robotik

Modulname	Modulcode
Formula Student 1	Ba - AW103
Modulverantwortliche/r	Fakultät
Prof. Dr. rer. nat. Salvatore Sternkopf	Ingenieurwissenschaften und Gesundheit

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	4	Wahlpflicht	6.0

Voraussetzungen laut Prüfungsordnung

Grundlagen aus mindestens einem der Fachgebiete Strömungslehre und Thermodynamik, Statik, Festigkeitslehre, Konstruktion, Elektrotechnik, Informatik, Regelungstechnik, Betriebswirtschaft, Unternehmensführung

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname		SWS	Workload
I.	LV Formula Student I		5.0	0∨ 0Ü
				2L IS
				3P
Sumi	Summe (Pflicht und Wahlpflicht)			180

Qualifikationsziele

Die Studierenden

- vertiefen ihre ingenieurwissenschaftlichen Grundkenntnisse, indem sie Theorie, Experiment und Simulation problemorientiert kombinieren und die Lösungen konstruktiv unter Berücksichtigung wirtschaftlicher Restriktionen umsetzen,
- erarbeiten gemeinsam in Gruppenarbeit Lösungen, die im Rahmen von Seminar und Laborarbeit als reales Fahrzeug ausgeführt werden,
- erweitern ihre Fähigkeiten, in anwendungsorientierten Projekten zu arbeiten
- verbessern Teamfähigkeit und Kommunikation
- stellen Ergebnisse strukturiert dar (auch auf englisch)
- sammeln internationale Erfahrung
- gewinnen Selbstbewusstsein.

Zu erbringende Prüfungsleistung/Studienleistung

HA oder P oder D / PA, R, EX, LP

Modulname		Modulcode
Formula Student I		Ba - 106
Veranstaltungsname	Veranstaltungsart	Veranstaltungscode
LV Formula Student 1	Projektgruppe	Ba - 106-VI
Lehrende/r	Fakultät	Arbeitsaufwand
Prof. Dr. rer. nat. Salvatore Sternkopf	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 90 WS Eigenstudium: 90 WS

Angebotshäufigkeit	ECTS	SWS	Sprache
nur im Sommersemester	6.0	5.0	deutsch

Innerhalb eines Projektteams wird ein Fahrzeug entwickelt und aufgebaut, welches von dem Team in Wettbewerben vorgestellt wird.

Die Studierenden

- entwickeln eine Baugruppe oder eine Funktion,
- implementieren oder bauen diese Funktion/Baugruppe,
- testen sie,
- dokumentieren sie,
- stellen die Arbeit und die Ergebnisse im Team und/oder auf Wettbewerben vor,
- unterstützen das Projektteam bei einem Wettbewerb.

fachliche Inhalte: Fahrzeugtechnik, Elektrotechnik, Projektmanagement, Betriebswirtschaft

Zusätzliche Angaben

auch PO21, Belegbar in den Studiengängen: PMB-K, Phl, PMB-P, El-A, El-I

Modulname	Modulcode
Grundlagen der Fahrzeugtechnik	Ba - AW104
Modulverantwortliche/r	Fakultät
Prof. Dr. Christopher Frey	Ingenieurwissenschaften und Gesundheit

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	2	Wahlpflicht	3.0

Voraussetzungen laut Prüfungsordnung

Konstruktion I, Technische Mechanik I - Statik

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname		SWS	Workload
1.	LV Grundlagen Fahrzeugtechnik		2.0	2V 0Ü
				0L 0S 0P
Sumi	Summe (Pflicht und Wahlpflicht)		2.0	90

Qualifikationsziele

Vermittelt werden grundlegende Kenntnisse zur Auslegung und Beurteilung von Fahrzeugkonzepten. Praxisorientierte Aufgaben vermitteln einen ersten Einblick zu typischen Fragestellungen, so wie sie bei der Entwicklung eines Fahrzeuges gestellt werden.

Zu erbringende Prüfungsleistung / Studienleistung

KI/LP

Modulname		Modulcode
Grundlagen Fahrzeugtechnik		Ba - AW104
Veranstaltungsname	Veranstaltungsart	Veranstaltungscode
LV Grundlagen Fahrzeugtechnik	Vorlesung/Übung	Ba - AW104-VI
Lehrende/r	Fakultät	Arbeitsaufwand
Prof. Dr. Christopher Frey	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 30 WS Eigenstudium: 60 WS

Angebotshäufigkeit	ECTS	SWS	Sprache
nur im Sommersemester	3.0	2.0	deutsch

Antriebs- und Fahrzeugkonzepte Fahrwiderstände Antreiben Bremsen Querdynamik

Zusätzliche Angaben

auch PO21, englischer Titel "Fundamentals of vehicle design", auch belegbar in den Studiengängen: PMB-P

Modulname	Modulcode
Additive Fertigung	Ba - AW105
Modulverantwortliche/r	Fakultät
Prof. Dr. Christian Podolsky	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang		

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	5	Wahlpflicht	3.0

Voraussetzungen laut Prüfungsordnung
CAD

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname		SWS	Workload
1.	LV Additive Fertigung		2.0	0.5∨ 0.5Ü
				OL OS IP
Sumi	Summe (Pflicht und Wahlpflicht)		2.0	90

Qualifikationsziele

Die Studierenden können:

- Aspekte der fertigungsgerechten Konstruktion verstehen und anwenden
- Die gängigen Verfahren einschätzen, Vor- und Nachteile benennen
- Einfache Projekte selbst entwerfen und als 3D Druck umsetzen
- Einen FDM Drucker einstellen, die gängigen Parameter optimieren, einfache

Druckbilder analysieren und verbessern

Zu erbringende Prüfungsleistung / Studienleistung

BÜ oder KI

Modulname		Modulcode
Additive Fertigung		Ba - AW105
Veranstaltungsname	Veranstaltungsart	Veranstaltungscode
LV Additive Fertigung	Vorlesung/Übung	Ba - AW105-VI
Lehrende/r	Fakultät	Arbeitsaufwand
Prof. Dr. Christian Podolsky	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 30 WS Eigenstudium: 60 WS

Angebotshäufigkeit	ECTS	SWS	Sprache
nur im Wintersemester	3.0	2.0	deutsch

- Einführung und Begriffe, Grundlagen des Additive Manufacturing
- AM gerechte Konstruktion (Grundlagen)
- Fehlerbilder, Parameteroptimierung
- Erstellung eines eigenen Projektes

Optional: Exkursion zum besseren Verständnis der Inhalte

Zusätzliche Angaben

auch PO21, auch belegbar in den Studiengängen Medizintechnik, Ingenieurinformatik und Robotik

Modulname	Modulcode
Elektromagnetische Verträglichkeit	Ba - AW106
Modulverantwortliche/r	Fakultät
Prof. Dr. Jens Peter Kärst	Ingenieurwissenschaften und Gesundheit

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	5	Wahlpflicht	3.0

Voraussetzungen laut Prüfungsordnung
Elektrotechnik, Elektronik

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname		SWS	Workload
1.	LV Elektromagnetische Verträglichkeit		2.0	1.5V 0Ü OL OS 0.5P
Summe (Pflicht und Wahlpflicht)		2.0	90	

Qualifikationsziele

Die Studierenden sind in der Lage ihr Wissen über

- physikalische Grundlagen
- normativ vorgeschriebene Messaufbauten sowie
- die Funktionsweise typischer EMV-Messgeräte auf einfache Messaufgaben im EMV- Labor zu übertragen und zur Anwendung zu bringen.

Sie können allein und in der Arbeitsgruppe ein Gerätedesign hinsichtlich seiner EMV analysieren und EMV-Maßnahmen erarbeiten.

Zu erbringende Prüfungsleistung /Studienleistung

BÜI/-

Modulname	Modulcode		
Elektromagnetische Verträglichkeit	Ba – AW106		
Veranstaltungsname	Veranstaltungsart	Veranstaltungscode	
LV Elektromagnetische Verträglichkeit	Vorlesung/Übung	Ba – AW106-VI	
Lehrende/r	Fakultät	Arbeitsaufwand	
Prof. Dr. Jens Peter Kärst	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 30 WS Eigenstudium: 60 WS	

Angebotshäufigkeit	ECTS	SWS	Sprache
nur im Wintersemester	3.0	2.0	deutsch

- Störquellen
- Abblockung, Entkopplung, SchirmungEmissionsmesstechnik
- Störfestigkeitsprüftechnik
- Entstörmittelmessung
- EMV-Normung
- Messprojekt in dem EMV-Labor

Zusätzliche Angaben

auch PO21, englischer Titel "Electromagnetic compatibility", auch belegbar in den Studiengängen: Phl, El-A, El-I

Modulname	Modulcode
Spezielle Relativitätstheorie	Ba - AW107
Modulverantwortliche/r	Fakultät
Prof. Dr. Andrea Koch	Ingenieurwissenschaften und Gesundheit

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	4	Wahlpflicht	3.0

Voraussetzungen laut Prüfungsordnung
Dynamik

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname		SWS	Workload
1.	LV Spezielle Relativitätstheorie		2.0	IV IÜ 0L
				0S 0P
Summe (Pflicht und Wahlpflicht)		2.0	90	

Qualifikationsziele

Die Studierenden erlernen die Grundzüge der speziellen Relativitätstheorie.

Sie verstehen die Konsequenzen, die sich aus der Konstanz der Lichtgeschwindigkeit in allen Inertialsystemen ergeben und können diese auf physikalisch-technische Fragestellungen selbstständig anwenden.

Die Studierenden können physikalische Konzepte kritisch hinterfragen und mit komplexen Ansätzen zielführend arbeiten.

Zu erbringende Prüfungsleistung / Studienleistung

KI/-

Modulname	Modulcode		
Spezielle Relativitätstheorie		Ba - AW107	
Veranstaltungsname	Veranstaltungsart	Veranstaltungscode	
LV Spezielle Relativitätstheorie	Vorlesung/Übung	Ba - AW107-VI	
Lehrende/r	Fakultät	Arbeitsaufwand	
Prof. Dr. Andrea Koch	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 30 WS Eigenstudium: 60 WS	

Angebotshäufigkeit	ECTS	SWS	Sprache
nur im Sommersemester	3.0	2.0	deutsch

- Zeitdilatation
- Längenkontraktion
- Gleichzeitigkeit in bewegten Systemen
- Energie- Masse-Equivalent
- Relativistischer Impuls
- Lorentztransformation
- Vierervektoren

Zusätzliche Angaben

auch PO21, englischer Titel "Special relativity", auch belegbar in den Studiengängen: PMB-K, Phl, PMB-P, El-A, El-I

Modulname	Modulcode
PCB Design	Ba - AW108
Modulverantwortliche/r	Fakultät
Prof. DrIng. Steffen Kaufmann	Ingenieurwissenschaften und Gesundheit

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	4	Wahlpflicht	3.0

Voraussetzungen laut Prüfungsordnung
Elektronik I

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname		SWS	Workload
I.	LV PCB Design		2.0	IV 0Ü IL
				0S 0P
Summe (Pflicht und Wahlpflicht)		2.0	90	

Qualifikationsziele

- Erstellen von Schaltplänen und Layouts für mehrlagige Platinen
- Verständnis von EMV-gerechten Designs
- Verständnis der technischen und wirtschaftlichen Randbedingungen für Leiterplatten Designs (Strukturgrößen, Stückzahlen, Bestückungen)
- Anwendung von ingenieurwissenschaftlichen Grundkenntnissen auf ein gewähltes praktisches Leiterplattenprojekt (wahlweise in Gruppenarbeit)
- Anwendung von Software-Werkzeugen zum Entwurf von Leiterplatten

Strukturierte Präsentation der Ergebnisse (wahlweise in Englisch)

Zu erbringende Prüfungsleistung / Studienleistung

KI/LP

Modulname		Modulcode	
PCB Design		Ba - AW108	
Veranstaltungsname	Veranstaltungsart	Veranstaltungscode	
LV PCB Design	Vorlesung/Übung	Ba - AWI08-VI	
Lehrende/r	Fakultät	Arbeitsaufwand	
Prof. DrIng. Steffen Kaufmann	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 30 WS Eigenstudium: 90 WS	

Angebotshäufigkeit	ECTS	SWS	Sprache
nur im Sommersemester	3.0	2.0	deutsch englisch

- Erstellung von mind. zwei Platinen und Schaltplänen mit zwei bis vier Lagen
- Verständnis von kritischen Design-Reviews, Wellenwiderstand und EMV, Ground-Bounce und Power-Supply-Integrity
- Erlernen des Umgangs mit einem ECAD-Werkzeug am Beispiel KiCAD
 - Grundlagen zum Erstellen eines Schaltplans und einer Bauteilbibliothek mit Datenbasis zur Bauteilbeschaffung
 - Anforderungen an die Bauteilplatzierung und die Leiterbahnführung für eine professionelle Leiterplatte
 - Designregeln vom Leiterplattenfertiger und Bestücker
 - Lagenaufbau & montagefreundliche Bauteilplatzierung
 - inspektionsfreundliche Leiterbahnführung

Zusätzliche Angaben

auch PO21, auch belegbar in den Studiengängen: PMB-K, Phl, PMB-P, El-A, El-I

Modulname	Modulcode
3D-CAD 1 Grundkurs	Ba - AW109
Modulverantwortliche/r	Fakultät
Studiendekan*in	Ingenieurwissenschaften und Gesundheit

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	4	Wahlpflicht	3.0

Voraussetzungen laut Prüfungsordnung
keine

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	SWS	Workload
1.	LV 3D-CAD I Grundkurs	2.0	0∨ 0Ü
			2L 0S 0P
Sumi	me (Pflicht und Wahlpflicht)	2.0	90

Qualifikationsziele

- Kenntnisse über die Grundfunktionalität des 3D-CAD-Systems (ProE)
- Anwendung der Grundelemente und des Grundwissens im CAD-Labor
- Einordnung der 3D-CAD-Technologie technisch und wirtschaftlich

Beherrschung von Grundfunktionen des 3D-CAD Systems ProEngineer und deren Grund-Konstruktionselemente, Montageprozeduren und Zeichnungserstellung.

Zu erbringende Prüfungsleistung / Studienleistung

E / -

Modulname		Modulcode
3D-CAD I Grundkurs		Ba - AW109
Veranstaltungsname	Veranstaltungsart	Veranstaltungscode
LV 3D-CAD 1 Grundkurs	Vorlesung/Übung	Ba - AW109-VI
Lehrende/r	Fakultät	Arbeitsaufwand
Studiendekan*in	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 30 WS Eigenstudium: 60 WS

Angebotshäufigkeit	ECTS	SWS	Sprache
nur im Sommersemester	3.0	2.0	deutsch

Erstellung der Konstruktionselemente: Profil-, Zieh-, Verbund- und Rotationskörper, Profil-, Zieh-, Verbund- und Rotationsmaterialschnitte, Erstellung technischer Zeichnungen, Erstellung von Montagebaugruppen und Systemen.

Zusätzliche Angaben	
auch PO21, auch belegbar in den Studiengängen: Phl, El-A, El-I	

Modulname	Modulcode
Astronomie	Ba - AWII0
Modulverantwortliche/r	Fakultät
Prof. Dr. rer. nat. Salvatore Sternkopf	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang	

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	5	Wahlpflicht	2.0

Voraussetzungen laut Prüfungsordnung
keine

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname		SWS	Workload
1.	LV Astronomie		2.0	IV 0Ü
				0.5L 0S
				0.5S
Summe (Pflicht und Wahlpflicht)		2.0	60	

Qualifikationsziele

Die Studierenden entwickeln ein grundlegendes Verständnis der Astronomie als Teilgebiet der Naturwissenschaften und erkennen deren Bedeutung für das physikalische Weltbild (Verstehen). Sie können die Prinzipien der technischen Optik auf astronomische Beobachtungsmethoden anwenden und die Funktionsweise entsprechender Instrumente erklären (Anwenden, Verstehen).

Darüber hinaus analysieren sie die Wechselwirkungen zwischen naturwissenschaftlichem Erkenntnisgewinn und technologischem Fortschritt und bewerten die Rolle internationaler Kooperationen in der astronomischen Forschung (Analysieren, Bewerten).

Die Studierenden sind in der Lage, ingenieurwissenschaftliche Methoden auf Problemstellungen der Astrophysik und astronomischen Technik zu übertragen und diese interdisziplinär zu bearbeiten (Anwenden, Erzeugen).

Schließlich verknüpfen sie Erkenntnisse aus Physik, Mathematik, Technik und Informatik, um komplexe Fragestellungen der Weltraumforschung zu durchdringen und Lösungsansätze zu entwickeln (Erzeugen).

Zu erbringende Prüfungsleistung

KI (PL) oder M

Modulname		Modulcode		
Astronomie		Ba - AWII0		
Veranstaltungsname	Veranstaltungsart	Veranstaltungscode		
LV Einführung in die Astronomie	Vorlesung/Übung	Ba - AWII0-VI		
Lehrende/r	Fakultät	Arbeitsaufwand		
Prof. Dr. rer. nat. Salvatore Sternkopf	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 30 WS Eigenstudium: 30 WS		

Angebotshäufigkeit	ECTS	SWS	Sprache
nur im Wintersemester	2.0	2.0	deutsch

- Grundlagen, Koordinatensysteme, Einteilung, Sternkarten, Instrumentierung, Elektromagnetisches Spektrum, Optische Instrumente
- Radio- und Röntgenteleskope, Sensoren in der Astronomie
- Sonnensystem, Gravitationsgesetz, Keplersche Gesetze, Planeten und Monde: Vergleich mit geologischen Bedingungen der Erde
- Geburt, Leben und Tod der Sterne, Klassifizierung der Sterne, Galaxien
- Wechselwirkungsmechanismen von Gas und Staub in Strahlungsfeldern, Planeten- und Sternenentstehung, Exoplaneten
- Grundlagen der Kosmologie

Zusätzliche Angaben		

Modulname	Modulcode
3D-CAD 2 Aufbaukurs	Ba - AWIII
Modulverantwortliche/r	Fakultät
Studiendekan*in	Ingenieurwissenschaften und Gesundheit

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	5	Wahlpflicht	3.0

Voraussetzungen laut Prüfungsordnung
keine

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname		SWS	Workload
I.	LV 3D-CAD 2 Aufbaukurs		2.0	0∨ 0Ü
				2L 0S 0P
Summe (Pflicht und Wahlpflicht)			2.0	90

Qualifikationsziele

- Vertiefende Kenntnisse über die Funktionalität des 3D-CAD-Systems (ProE)
- Anwendung des vertieften Wissens durch Lösung einer umfangreichen Entwicklungs-Konstruktion
- Ausführliche Dokumentation der Entwicklungs- und Konstruktionsergebnisse
- Einordnung der 3D-CAD-Technologie technisch und wirtschaftlich Beherrschung der vertieften Funktionen des 3D-CAD Systems ProEngineer und deren Konstruktionselemente, Montageprozeduren und Zeichnungserstellung.

Zu erbringende Prüfungsleistung / Studienleistung

E / -

Modulname		Modulcode	
3D-CAD 2 Aufbaukurs		Ba - AWIII	
Veranstaltungsname	Veranstaltungsart	Veranstaltungscode	
LV 3D-CAD 2 Aufbaukurs	Vorlesung/Übung	Ba - AWIII-VI	
Lehrende/r	Fakultät	Arbeitsaufwand	
Studiendekan*in	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 30 WS Eigenstudium: 60 WS	

Angebotshäufigkeit	ECTS	SWS	Sprache
nur im Wintersemester	3.0	2.0	deutsch

Erweiterte Möglichkeiten Körper und Materialschnitte zu erzeugen, Einbindung von Beziehungen (z.B. Normteile), Erstellung mathematisch beschreibbare Konturen (z.B. Zahnrad), Flächenmodellierung, Erstellung einer kompletten Konstruktion mit Einzelteilen und Zusammenbau.

Zusätzliche Angaben	
auch PO21, auch belegbar in den Studiengängen: PMB-K, PMB-P	

Modulname	Modulcode
Latex Fundamentals	Ba - AW112
Modulverantwortliche/r	Fakultät
Prof. Dr. Achim Ibenthal	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang	

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	4	Wahlpflicht	3.0

Voraussetzungen laut Prüfungsordnung
Englischkenntnisse (Schulenglisch)

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname		SWS	Workload
1.	LV Latex Fundamentals		2.0	2V 0Ü
				0L 0S 0P
Summe (Pflicht und Wahlpflicht)			2.0	90

Qualifikationsziele

Erstellung technisch-wissenschaftlicher Dokumentation mit dem Textsatzsystem Latex. Nach erfolgreichem Abschluss sind Studierende in der Lage, Abschlussarbeiten, Artikel, Bücher und Präsentationen in professionellem Layout zu halten inkl. Formelsatz, Tabellensatz, und der Einbindung von Grafiken und multimedialen Inhalten.

Zu erbringende Prüfungsleistung / Studienleistung

PR oder ST / -

Modulname		Modulcode
Latex Fundamentals		Ba - AWII2
Veranstaltungsname	Veranstaltungsart	Veranstaltungscode
LV Latex Fundamentals	Vorlesung/Übung	Ba - AWI I 2-VI
Lehrende/r	Fakultät	Arbeitsaufwand
Prof. Dr. Achim Ibenthal	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 30 WS Eigenstudium: 60 WS

Angebotshäufigkeit	ECTS	SWS	Sprache
nur im Sommersemester	3.0	2.0	englisch

- InstallationWeb Ressourcen
- Fonts
- Paragraphenformatierung
- Seitenformatierung
- Formelsatz
- Boxen, Tabellen und Grafiken
- Zitate und Referenzen
- Textindizierung
- Präsentationen
- Zusätzliche Funktionalität mittels Paketerweiterungen

Zusätzliche Angaben

auch PO21, englischer Titel "Latex Fundamentals", auch belegbar in den Studiengängen: PMB-K, PhI, PMB-P, EI-A, EI-I, MT

Modulname	Modulcode
Flying Robots	Ba - AWII3
Modulverantwortliche/r	Fakultät
Prof. Dr. Thomas Linkugel	Ingenieurwissenschaften und Gesundheit

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	4	Wahlpflicht	3.0

Voraussetzungen laut Prüfungsordnung
Informatik I, Informatik 2

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname		SWS	Workload
1.	LV Flying Robots	Wahlpflicht	2.0	IV 0Ü
				OL OS IP
Sum	Summe (Pflicht und Wahlpflicht)			90

Qualifikationsziele

Den Studierenden wird ein grundlegendes Wissen vermittelt über:

- die Motivation und die Entwicklung von fliegenden Robotern,
- die wichtigsten Fachthermini aus den Bereichen mobile fliegende Roboter,
- das Konzept und die Funktionsweise von Multirotorsystemen am Beispiel von ?State of the Art? Quadrocoptern,
- die Funktionsweise und Verarbeitung von benötigten Sensoren und Messsystemen,
- die mathematische Betrachtung der unterschiedlichen Koordinatensysteme in der Luftfahrt,
- die Anwendung von Algorithmen zur Datenfilterung.

Zu erbringende Prüfungsleistung /Studienleistung

[P + PA] / -

Modulname		Modulcode	
Flying Robots		Ba - AWII3	
Veranstaltungsname	Veranstaltungsart	Veranstaltungscode	
LV Flying Robots	Vorlesung/Übung	Ba - AWII3-VI	
Lehrende/r	Fakultät	Arbeitsaufwand	
Prof. Dr. Thomas Linkugel	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 30 WS Eigenstudium: 60 WS	

Angebotshäufigkeit	ECTS	SWS	Sprache
nur im Sommersemester	3.0	2.0	deutsch
			englisch

In diesem Wahlmodul werden den Studierenden die Grundlagen von fliegenden Robotern bzw. unbemannten Multirotorsystemen vermittelt. Dazu werden die Grundkonzepte und Funktionsweisen der fliegenden Plattformen sowie Sensoren und notwendige mathematische Verfahren und Koordinatensysteme vermittelt.

Darauf aufbauend untersuchen die Studierenden in Gruppen von 2 Personen die Funktionsweise eines realen Quadrocopters in MatlabSimulink®. Mit diesem Wissen setzen die Studierende dann ein eigenständiges Projekt auf Basis dieses Quadrocopters und präsentieren am Ende des Semesters die Ergebnisse.

Zusätzliche	Angahen
Lusaczniche	Aligabell

auch PO21

Modulname	Modulcode
Formula Student Teamleitung	Ba - AW114
Modulverantwortliche/r	Fakultät
Prof. Dr. rer. nat. Salvatore Sternkopf	Ingenieurwissenschaften und Gesundheit

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
zwei Semester	5 - 6	Wahlpflicht	6.0

Voraussetzungen laut Prüfungsordnung Teilnahme am Projekt Formula Student seit mindestens einem, besser zwei Jahren

Zugehörige Lehrveranstaltungen:

N	r. Veranstaltungsname	SWS	Workload
I	LV Formula Student Teamleitung	2.0	0∨ 0Ü 0.5L IS
			0.3L 13 0.5P
Su	Summe (Pflicht und Wahlpflicht)		180

Qualifikationsziele

Die Studierenden (in der Teamleitung)

- planen ein komplexes Projekt
- koordinieren seine Durchführung
- akquirieren Teammitglieder
- leiten Teammitglieder an
- reagieren auf ungeplante Ereignisse
- verbessern ihre Führungskompetenz und Verhandlungsfähigkeit
- verbessern ihre Kommunikation
- treffen nachvollziehbare und allgemein akzeptierte Entscheidungen
- sammeln internationale Erfahrung
- stellen Ergebnisse strukturiert auf deutsch und englisch dar

Zu erbringende Prüfungsleistung / Studienleistung

ST / -

Modulname		Modulcode	
Formula Student Teamleitung		Ba - AW114	
Veranstaltungsname	Veranstaltungsart	Veranstaltungscode	
LV Formula Student Teamleitung	Vorlesung/Übung	Ba - AWI I 4-VI	
Lehrende/r	Fakultät	Arbeitsaufwand	
Prof. Dr. rer. nat. Salvatore Sternkopf	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 30 WS Eigenstudium: 150 WS	

Angebotshäufigkeit	ECTS	SWS	Sprache
Jedes Semester	6.0	2.0	deutsch englisch

Innerhalb eines Projektteams wird ein Fahrzeug entwickelt und aufgebaut, welches von dem Team in Wettbewerben vorgestellt wird.

Die Teamleiter

- führen ein Teilteam oder das Gesamtteam
- planen die notwendigen Aufgaben
- setzen Ziele und Randbedingungen
- kommunizieren Ziele, Projektfortschritt, Probleme innerhalb des Teams
- überwachen den Projektfortschritt fachlich, wirtschaftlich, terminlich
- vertreten das Team innerhalb und außerhalb der Hochschule
- dokumentieren die Arbeit des Teams, Fortschritte und lessons learnt

Die Teamleitung besteht aus maximal fünf erfahrenen ehemaligen Teammitgliedern.

Zusätzliche Angaben

auch PO21, belegbar in den Studiengängen: PMB-K, PMB-P, El-A, El-I

Modulname	Modulcode
Plasmamedizin	Ba - AW115
Modulverantwortliche/r	Fakultät
Prof. Dr. Christoph Rußmann	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang	

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	5	Wahlpflicht	3.0

Voraussetzungen laut Prüfungsordnung	
Medizinische Grundlagen 1, Medizinische Grundlagen 2	

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname		SWS	Workload
1.	LV Plasmamedizin		2.0	2V 0Ü
				0L 0S 0P
Sumi	Summe (Pflicht und Wahlpflicht)		2.0	90

Qualifikationsziele

- Aufbau eines grundlegenden Verständnisses für den nicht-klassischen Aggregatzustand Plasma
- Kenntnis der technischen Konzepte und Wirkweisen plasmabasierter Medizinprodukte
- Grundzüge der Pathophysiologie von Wundheilung, infizierten Wunden und chronischen Wunden
- Grundlagen der Mikrobiologie
- Physiologie und Relevanz der Mikrozirkulation
- Einordnung aktueller Plasmatherapien in den Stand der Technik

Zu erbringende Prüfungsleistung

KI / -

Modulname		Modulcode		
Plasmamedizin		Ba - AWII5		
Veranstaltungsname Veranstaltungsart		Veranstaltungscode		
LV Plasmamedizin Vorlesung/Übung		Ba - AWII5-VI		
Lehrende/r	Fakultät	Arbeitsaufwand		
Dr. Andreas Helmke	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 30 WS Eigenstudium: 60 WS		

Angebotshäufigkeit	ECTS	SWS	Sprache
nur im Wintersemester	3.0	2.0	deutsch

Grundlagen zu physikalischen Plasmen u.a. Konzepte der Plasmaerzeugung

Quellenkonzepte in der Plasmamedizin u.a. Entladung, Jet, Torch, dielektrisch beh. Entladung, Korona

Grundlagen der Wundheilung, Pathophysiologie der Chronifizierung von Wunden u.a. Stadien, Wundheilungsstörungen

Grundlagen der Physiologie von Mikrozirkulation Definition, Durchblutungsstörungen

Grundlagen der Mikrobiologie u.a. Systematik Eukaryoten, Prokaryoten; Infektionen, Gesundheitssystem; Multiresistenzen

Bislang nachgewiesene medizinrelevante Effekte und medizinische Anwendungsgebiete

- In vitro Studienübericht
- In vivo Studienübersicht (Antisepsis, Mikrozirkulation, Oberflächenbeschichtung)

Zusätzliche Angaben

auch PO21, auch belegbar in den Studiengängen: Phl, MeT

Modulname	Modulcode
Erfassung und Wandlung von Biosignalen	Ba - AW116
Modulverantwortliche/r	Fakultät
Prof. Dr. Stephan Wieneke	Ingenieurwissenschaften und Gesundheit

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	I	Wahlpflicht	3.0

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	SWS	Workload
I.	LV Erfassung und Wandlung von Biosignalen	2.0	2V 0Ü 0L 0S 0P
Summe (Pflicht und Wahlpflicht)		2.0	90

Qualifikationsziele

Die Studierenden sind in der Lage:

- -Die physikalischen, chemischen und technischen Grundlagen der Biosignalerfassung zu erläutern.
- Die Prinzipien unterschiedlicher Sensorarten (z.B. Chemische, elektrische und mechanische Wandler) zu beschreiben
- Die Entstehung relevanter Biosignale wie EKG, EMK, Körpertemperatur oder Blutdruck zu erklären.
- Den Aufbau und Funktionsweise medizinische Geräte zur Funktionsdiagnostik zu analysieren und deren messtechnische Eigenschaften bewerten.
- -Sensoren und Wandlertypen in Anwendungsszenarien sinnvoll auszuwählen und anzupassen.
- Verschiedene Messprinzipien im Hinblick auf ihre Eignung für spezifische biosignalverarbeitende Aufgaben zu bewerten.
- Physikalische/mechanische und elektrische Grundgleichungen auf Biosensoren anzuwenden.

Zu erbringende Prüfungsleistung / Studienleistung

KI/-

Modulname	Modulcode		
Erfassung und Wandlung von Biosignalen		Ba – AWII6	
Veranstaltungsname	Veranstaltungsart Veranstaltungscode		
LV Erfassung und Wandlung von Biosignalen	Vorlesung/Übung	Ba - AWII6-VI	
Lehrende/r	Fakultät	Arbeitsaufwand	
Prof. Dr. Stephan Wieneke	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 30 WS Eigenstudium: 60 W	′S

Angebotshäufigkeit	ECTS	SWS	Sprache
nur im Wintersemester	3.0	2.0	deutsch

Die Vorlesung beinhaltet folgende Themen:

- Grundlagen der Biosignale (physiologische Entstehung und Eigenschaften, typische Signalformen und Frequenzbereiche)
- Sensorprinzipien (chemische-, elektrische- und mechanische Wandler)
- Medizinische Messtechnik (Signalverarbeitung Filterung, Verstärkung, etc.)
- Medizinische Diagnostiksysteme (Aufbau, Wirkprinzip und Anwendungen von Geräten der Funktionsdiagnostik – EKG, EMG, EEG, Blutdruckmessung, Herzzeitvolumen, Spirometrie, Sturzsensoren und Bewegungserfassungsysteme, etc.)
- Anwendung und praktische Beispiele (Analyse und Interpretation realer Biosignale)
- Zukünftige Trends in der Funktionsdiagnostik

Zusätzliche Angaben

auch PO21, englischer Titel "Biosignal acquisition and processing"

Modulname	Modulcode
Leistungselektronik	Ba - AWII8
Modulverantwortliche/r	Fakultät
Prof. Dr. Jens Peter Kärst	Ingenieurwissenschaften und Gesundheit

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	5	Wahlpflicht	3.0

Voraussetzungen laut Prüfungsordnung
Elektrotechnik I, Elektronik I

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname		SWS	Workload
1.	LV Leistungselektronik		2.0	IV 0Ü
				OL OS IP
Sumi	Summe (Pflicht und Wahlpflicht)		2.0	90

Qualifikationsziele

- Kennenlernen und Verstehen der Funktionsweise leistungselektronischer Bauteile und Topologien
- Anwendung auf ausgewählte leistungselektronische Schaltungen
- Analyse perodischer Schaltvorgänge mittele analytischer Rechenmethoden sowie der numerischen Simulation
- Systematisches Vorgehen alleine und in der Arbeitsgruppe

Zu erbringende Prüfungsleistung / Studienleistung

[BÜ (70%) + PR (30%)] / -

Modulname		Modulcode		
Leistungselektronik		Ba - AWII8		
Veranstaltungsname	Veranstaltungsart	Veranstaltungscode		
LV Leistungselektronik	Vorlesung/Übung	Ba - AWII8-VI		
Lehrende/r	Fakultät	Arbeitsaufwand		
Prof. Dr. Jens Peter Kärst	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 30 WS Eigenstudium: 60 WS		

Angebotshäufigkeit	ECTS	SWS	Sprache
nur im Wintersemester	3.0	2.0	deutsch

- Einführung und Grundbegriffe
- Leistungshalbleiter
- Grundschaltungen der Leistungselektronik
- Gleichspannungs-Umrichter (Schaltnetzteile)
- Kühlung
- Numerische Simulation, analytische Berechnung, praktischer Aufbau
- Bearbeitung leistungselektronischer Projekte

Zusätzliche Angaben

auch PO21, englischer Titel "Power electronics", auch belegbar in den Studiengängen: Phl, El- A

Modulname	Modulcode
Koordinatenmesstechnik	Ba - AW119
Modulverantwortliche/r	Fakultät
DiplIng. Ingo Simon	Ingenieurwissenschaften und Gesundheit

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	5	Wahlpflicht	3.0

Voraussetzungen laut Prüfungsordnung
Konstruktion I oder gleichwertige Kenntnisse

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname		SWS	Workload
1.	LV Koordinatenmesstechnik		2.0	IV0Ü IL
				0S 0P
Summe (Pflicht und Wahlpflicht)		2.0	90	

Qualifikationsziele

Die Studierenden können Angaben zur geometrischen Produktspezifikation (GPS) lesen und verstehen sowie Wirkungsweisen und Fehlerquellen der Koordinatenmesstechnik kompetent nachvollziehen. Sie sind fähig Messstrategien am Koordinatenmessgerät zu entwickeln und eigenständig umzusetzen.

Zu erbringende Prüfungsleistung 7 Studienleistung

K (30%), BÜ (70%) / -

Modulname	Modulcode		
Koordinatenmesstechnik	Ba - AW119		
Veranstaltungsname Veranstaltungsart		Veranstaltungscode	
LV Koordinatenmesstechnik	Vorlesung/Übung	Ba - AWII9-VI	
Lehrende/r	Fakultät	Arbeitsaufwand	
Diplom Ingo Simon	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 30 WS Eigenstudium: 60 WS	

Angebotshäufigkeit	ECTS	SWS	Sprache
nur im Wintersemester	3.0	2.0	deutsch

- ISO-GPS Normen 14405, 5459 und 1101
- Taktile Koordinatenmessgeräte
- Aufspannung, Bezugs- und Werkstück-Koordinatensysteme
- -Antaststrategien und Aussagesicherheit Messprogramm und CNC-Steuerung

Zusätzliche Angaben

auch PO21, englischer Titel "Coordinate Measurement Technology",

Modulname	Modulcode
Aukom 1	Ba - AW120
Modulverantwortliche/r	Fakultät
DiplIng. Ingo Simon	Ingenieurwissenschaften und Gesundheit

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	4	Wahlpflicht	3.0

Voraussetzungen laut Prüfungsordnung

Einwilligung zur Datenübermittlung (Name, Geburtsdatum) an den AUKOM e.V., Übernahme der AUKOM Prüfungsgebühr

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname		SWS	Workload
I.	LV AUKOM Level I		2.0	?∨ ?Ü
				?L ?S?0P
Sumi	Summe (Pflicht und Wahlpflicht)		2.0	90

Qualifikationsziele

Das Seminar legt und festigt fertigungsmesstechnisches Basiswissen für Anfänger und fortgeschrittene Messtechniker nach didaktischen Erkenntnissen der Hersteller und Anwender moderner Technik für die Prüfung geometrischer Spezifikationen. Das bessere Verständnis der Messaufgaben und Einflussgrößen versetzt Messtechniker*Innen in die Lage, Messunsicherheiten zu reduzieren und damit Messergebnisse zuverlässiger und vergleichbarer zu machen. Die Minimierung von Kosten und Ausschuss wird unterstützt.

Zu erbringende Prüfungsleistung / Studienleistung

KI/-

Modulname		Modulcode	
Aukom I		Ba - AW120	
Veranstaltungsname	Veranstaltungsart	Veranstaltungscode	
LV AUKOM Level 1	Kurs	Ba - AW I 20-VI	
Lehrende/r	Fakultät	Arbeitsaufwand	
Prof. Dr. Christian Podolsky Diplom Ingo Simon	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 30 WS Eigenstudium: 60 WS	

Angebotshäufigkeit	ECTS	SWS	Sprache
nur im Sommersemester	3.0	2.0	deutsch

- I. Messgrößen und Einheiten, 2. 2D und 3D Koordinatensysteme, 3. Koordinatenmessgeräte, 4. Sensoren für Koordinatenmessgeräte, 5. Grundlagen Messtechnik, 6. Maßtolerierung, 7. Geometrische Elemente, 8. Geometrische Verknüpfungen, 9. Vorbereiten einer Messung, 10. Sensoren auswählen und einmessen,
- 11. Messen, 12. Messung auswerten, 13. Prüfplanung, 14. Dokumentation und Qualitätsmanagement

Zusätzliche Angaben

PO21, englischer Titel "Aukom level 1, auch belegbar in den Studiengängen Medizintechnik, Ingenieurinformatik und Robotik

Modulname	Modulcode
Wind- und Wasserkraft	Ba – AW121
Modulverantwortliche/r	Fakultät
Prof. Dr. Karlfrid Osterried	Ingenieurwissenschaften und Gesundheit

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	4	Wahlpflicht	3.0

Voraussetzungen laut Prüfungsordnung
keine

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname		SWS	Workload
1.	LV Wind- und Wasserkraft		2.0	2V 0Ü
				0L 0S 0P
Sum	Summe (Pflicht und Wahlpflicht)		2.0	90

Qualifikationsziele

- Bewusstsein über Zusammenhang von technischen, ökonomischen, ökologischen, gesellschaftlichen und politischen Zusammenhängen in einem globalen Markt
- Verständnis für Einfluss moderner Werkstoffe und Verfahren aus Maschinenbau, Elektrotechnik, Informatik auf Effizienz von Windkraftanlagen
- Beurteilung von Standorten für Windkraft
- Anwendung ingenieurwissenschaftlicher Grundlagen

Zu erbringende Prüfungsleistung / Studienleistung

KI / -

Modulname		Modulcode	
Wind- und Wasserkraft		Ba – AW121	
Veranstaltungsname	Veranstaltungsart	Veranstaltungscode	
LV Wind- und Wasserkraft	Vorlesung/Übung	Ba - AW121-VI	
Lehrende/r	Fakultät	Arbeitsaufwand	
Prof. Dr. Karlfrid Osterried	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 30 WS Eigenstudium: 60 WS	

Angebotshäufigkeit	ECTS	SWS	Sprache
nur im Sommersemester	3.0	2.0	deutsch

- Überblick aktueller Wind- und Wasserkraftnutzung in Deutschland, Europa, Welt; Bestand, Ausbau, Perspektiven und Potenziale der Wind- und Wasserkraft
- Berechnung Jahresenergieertrag, Energetische und wirtschaftliche Amortisation
- physikalische Grundlagen der Energienutzung massenbehafteter Strömung
- Betz-Grenze der Windenergienutzung
- Standortwahl, Modellierung Geländerauhigkeit und Windgeschwindigkeit (Höhe)
- Aufbau und Komponenten von WiWa-Anlagen, Getriebe, Multipolgerneratoren
- Klassifizierung von Windrotoren, Schnelllaufzahl, Aerodynamik und Drehmoment
- Rotorblätter: Form und Verwindung, Herstellung, Vakuuminfusionsverfahren
- Anlagenkennlinien, Leistungsregelung
- Wasserkraft-Turbinenarten und deren Einsatzbereiche
- Auslegung von Wasserkraftwerken, Werkleitungsplan

Zusätzliche Angaben

auch PO21, englischer Titel "windenergy and waterpower", auch belegbar in den Studiengängen: PMB-K, PhI, PMB-P, MeT, EI-A, EI-I

Modulname	Modulcode
Anatomie und Physiologie	Ba - AW 122
Modulverantwortliche/r	Fakultät
Prof. Dr. Christoph Rußmann	Ingenieurwissenschaften und Gesundheit

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	5	Wahlpflicht	3.0

Voraussetzungen laut Prüfungsordnung
Physik I, Physik 2, Werkstoffkunde und Chemie

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname		SWS	Workload
I.	LV Anatomie und Physiologie		2.0	2V 0Ü
				0L 0S 0P
Summe (Pflicht und Wahlpflicht)		2.0	90	

Qualifikationsziele

Die Anatomie und Physiologie Vorlesung hat das Ziel die biologischen, physikalischen und chemischen Faktoren vorzustellen, die für die Entstehung, die Entwicklung und den Erhalt des Lebens verantwortlich sind. Dabei werden die Grundlagen der Zellen, der anatomische Aufbau und physiologische Funktionen des menschlichen Organs beschrieben. Des Weiteren werden die Regulationssysteme und Funktionsstörungen der Organe diskutiert.

Zu erbringende Prüfungsleistung / Studienleistung

KI/-

Modulname		Modulcode
Anatomie und Physiologie		Ba - AW122
Veranstaltungsname	Veranstaltungsart	Veranstaltungscode
LV Anatomie und Physiologie	Vorlesung/Übung	Ba - AWI22-VI
Lehrende/r	Fakultät	Arbeitsaufwand
Lehrbeauftragte*r	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 30 WS Eigenstudium: 60 WS

Angebotshäufigkeit	ECTS	SWS	Sprache
nur im Wintersemester	3.0	2.0	deutsch

- I. Grundlagen der Zellphysiologie
- 2. Herzfunktion
- 3. Funktion des Herzkreislaufsystems und seine Störungen
- 4. Atmung und Lungenfunktionen
- 5. Wärmehaushalt und Temperaturregulation sowie Störungen
- 6. Ernährung und Verdauung im Magendarmtrakt
- 7. Säure-Basen-Haushalt und seine Störungen
- 8. Nierenfunktion
- 9. Hormonelle Regulation und deren Störungen

Zusätzliche Angaben

auch PO21, auch belegbar in den Studiengängen: PMB-K, PhI, PMB-P, EI-A, EI-I

Modulname	Modulcode
Medical Imaging	Ba - AW123
Modulverantwortliche/r	Fakultät
Prof. Dr. Andrea Koch	Ingenieurwissenschaften und Gesundheit

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	4	Wahlpflicht	3.0

Voraussetzungen laut Prüfungsordnung
Physik 1, Physik 2, Elektrotechnik I

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname		SWS	Workload
1.	LV Medical Imaging		2.0	1.5∨ 0.5Ü
				0L 0S 0P
Summe (Pflicht und Wahlpflicht)		2.0	90	

Qualifikationsziele

Die Studierenden verstehen naturwissenschaftliche Methoden und ingenieurwissenschaftlichen Prinzipien in der Medizintechnik.

Sie können physikalisch-technische Methoden auf medizinische Diagnostik an ausgewählten Beispielen übertragen.

Die Studierenden sind vertraut mit den Anforderungen der Anwendung verschiedener technischer Geräte in der Diagnostik und Therapie.

Sie können technische Geräte auf ihren Nutzen und ihre Gefahren in der medizinischen Anwendung analysieren.

Zu erbringende Prüfungsleistung / Studienleistung

KI / -

Name des Studiengangs: Wahlpflicht Bachelor Ingenieurwissenschaften

Modulname: Medical Imaging

Modulname		Modulcode
Medical Imaging		Ba - AW123
Veranstaltungsname	Veranstaltungsart	Veranstaltungscode
LV Medical Imaging	Vorlesung/Übung	Ba - AWI23-VI
Lehrende/r	Fakultät	Arbeitsaufwand
Prof. Dr. Andrea Koch	Ingenieurwissenschaften und	Präsenzstudium: 30 WS
	Gesundheit	Eigenstudium: 60 WS

Angebotshäufigkeit	ECTS	SWS	Sprache
nur im Sommersemester	3.0	2.0	deutsch

Inhalte

- Allgemeine Anforderungen der Medizin
- Übersicht: Bildgebende Verfahren zur medizinischen Diagostik
- Röntgendiagnostik,
- Kernspintomografie,
- Optische Kohärenztomografie
- PET-Verfahren,
- Ultraschallverfahren,
- neueste Entwicklungen

Zusätzliche Angaben

auch PO21, englischer Titel "Medical Imaging", auch belegbar in den Studiengängen: PMB-K, Phl, PMB-P, MeT, EI-A, EI-I

Modulname	Modulcode
Produktentwicklung und -zulassung in der Medizintechnik	Ba – AW124
Modulverantwortliche/r	Fakultät
Prof. Dr. Christoph Rußmann	Ingenieurwissenschaften und Gesundheit

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	5	Wahlpflicht	3.0

Voraussetzungen laut Prüfungsordnung
Grundstudium, Interesse an Medizintechnik

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	SWS	Workload
I.	LV Produktentwicklung und -zulassung in der Medizintechnik	2.0	2V 0Ü 0L 0S 0P
Summe (Pflicht und Wahlpflicht)		2.0	90

Qualifikationsziele

Die Studierenden lernen

- den spannenden Prozess, wie man von der ersten Idee bis zur Markteinführung ein Medizinprodukt entwickelt, kennen (Vorlesung und Fallstudien)
- die verschiedenen Gewerke in dem Entwicklungsprozess, deren Rolle und deren Methode, kennen
- neue Trends in der Medizintechnikentwicklung

Zu erbringende Prüfungsleistung / Studienleistung

KI / -

Modulname	Modulcode		
Produktentwicklung und -zulassung in der Medizintechnik		Ba - AW124	
Veranstaltungsname	Veranstaltungsart	Veranstaltungscode	
LV Produktentwicklung und - zulassung in der Medizintechnik	Vorlesung/Übung	Ba - AWI24-VI	
Lehrende/r	Fakultät	Arbeitsaufwand	
Prof. Dr. Christoph Rußmann	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 30 WS Eigenstudium: 60 WS	

Angebotshäufigkeit	ECTS	SWS	Sprache
nur im Wintersemester	3.0	2.0	deutsch

- Einführung: Was ist ein Medizinprodukt? Arten, Anwendungen, Herausforderungen
- Rechtliche Grundlagen: Welche Spielregeln gelten und warum? Was passiert, wenn diese Regeln nicht eingehalten werden?
- Innovation in der Medizintechnik: Der Weg von der Forschung in die Medizintechnik!
- Vorentwicklung von Medizinprodukten bis zur ersten Studie am Tier oder Mensch
- Produkthauptentwicklung: Vom Demonstrator zum Produkt!
- Klinische Forschung: "first-in-men"-Studie, Zulassungsstudie,

Anwendungsentwicklung, Post-Market-Follow-Up, Marketingstudien

- Globale Zulassung von Medizinprodukten (für Globetrotter)
- Überwachung von Medizinprodukten nach der Markteinführung (Complaint-

Management): Was passiert, wenn doch etwas schief geht?

- Herausforderung Management in der Medizintechnik

Zusätzliche Angaben

auch PO21, englischer Titel "Product development and approval in Medtech", auch belegbar in den Studiengängen: PMB-K, PhI, PMB-P, Nichttechnisches Wahlpflichtmodul, MeT, El- A, El-I

Modulname	Modulcode
Angewandte Lasermedizin	Ba - AW125
Modulverantwortliche/r	Fakultät
Prof. Dr. Stephan Wieneke	Ingenieurwissenschaften und Gesundheit

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	4	Wahlpflicht	3.0

Voraussetzungen laut Prüfungsordnung
keine

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname		SWS	Workload
1.	LV Angewandte Lasermedizin		2.0	2V 0Ü
				0L 0S 0P
Summe (Pflicht und Wahlpflicht)		2.0	90	

Qualifikationsziele

Die Studierenden sind in der Lage:

- Die physikalischen Grundlagen der Lichtemission und –absorption sowie Funktionsprinzipien unterschiedlicher Lasertypen zu erklären.
- Die wesentlichen Eigenschaften von Laserstrahlung und deren technische Umsetzung in medizinischen Lasersystemen zu beschreiben.
- Die optischen Eigenschaften biologischer Gewebe und deren Bedeutung für laserinduzierte Effekte zu erläutern.
- Den Einfluss von Laserparametern (z.B. Wellenlänge, Pulsadauer, Energie) auf biologische Gewebe unter Berücksichtigung unterschiedlicher Wechselwirkungsmechanismen zu analysieren.
- Die Eignung von Laserverfahren für spezifische diagnostische und therapeutische Fragestellungen kritisch zu beurteilen.
- Neue Ansätze im Bereich der Lasermedizin in Ihren Potenzialen zu reflektieren und weiterzudenken.
- Einfache mathematische Beispiele zu Laserparameter, Wechselwirkungsmechanismen zu berechnen.

Zu erbringende Prüfungsleistung / Studienleistung

KI / -

Name des Studiengangs: Wahlpflicht Bachelor Ingenieurwissenschaften

Modulname: Angewandte Lasermedizin

Modulname		Modulcode	
Angewandte Lasermedizin		Ba - AW125	
Veranstaltungsname	Veranstaltungsart	Veranstaltungscode	
LV Angewandte Lasermedizin	Vorlesung/Übung	Ba - AWI25-VI	
Lehrende/r	Fakultät	Arbeitsaufwand	
Prof. Dr. Stephan Wieneke	Ingenieurwissenschaften und		
	Gesundheit	Eigenstudium: 60 WS	

Angebotshäufigkeit	ECTS	SWS	Sprache
nur im Sommersemester	3.0	2.0	deutsch

Inhalte

Die Vorlesung beinhaltet folgende Themen:

- Grundlagen der Emission und Absorption elektromagnetischer Strahlung
- Technische Grundlagen medizinischer Lasersysteme (Strahlführung, Sicherheit, etc.)
- Theoretische Grundlagen der Gewebeoptik (Streuung, Absorption, Anisotropie)
- Wechsel-Wirkungsmechanismen von Laserstrahlung in biologischem Gewebe (photochemische Prozesse, thermische Effekte, nichtlineare Effekte)
- Lasereinsatz in der Diagnostik (LSM, STED-Mikroskopie, OCT, Durchflusszytometrie und verwandte Verfahren)
- Lasereinsatz in der Therapie (LITT, LISL, LASIK, TMLR, etc.)

Zusätzliche Angaben

auch PO21, englischer Titel "Applied Laser Medicine"

Modulname	Modulcode
Digital Health	Ba - AW 126
Modulverantwortliche/r	Fakultät
Studiendekan*in	Ingenieurwissenschaften und Gesundheit

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	5	Wahlpflicht	3.0

Voraussetzungen laut Prüfungsordnung
keine

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname		SWS	Workload
I.	LV Digital Health		2.0	2V 0Ü
				0L 0S 0P
Summe (Pflicht und Wahlpflicht)			2.0	90

Qualifikationsziele

Die Studierenden können

- $I.\ die\ wesentlichen\ Schritte\ der\ Entwicklung\ von\ Medizinprodukten-software\ wiedergeben;$
- 2. die Konzepte der a. digitalen Transformation in der Medizintechnik; b. Digital Health im Gesundheitswesen; c. Software als Medizinprodukt; erläutern.

Zu erbringende Prüfungsleistung / Studienleistung

PR / -

Modulname		Modulcode
Digital Health		Ba - AW126
Veranstaltungsname	Veranstaltungsart	Veranstaltungscode
LV Digital Health	Vorlesung/Übung	Ba - AWI26-VI
Lehrende/r	Fakultät	Arbeitsaufwand
Lehrbeauftragte*r	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 30 WS Eigenstudium: 60 WS

Angebotshäufigkeit	ECTS	SWS	Sprache
nur im Wintersemester	3.0	2.0	englisch

- I. What and why of Medical Devices?
- 2. Classification and Regulations impacting Medical Devices
- 3. Medical device development? Value Map
- 4. Digital Transformation across the value map
- 5. Digital health, mIoT, and Remote Patient Monitoring
- 6. Software as a Medical Device (SaMD)
- 7. Commercialization of a medical devicesoftware (examples)

Zusätzliche Angaben

auch PO21, englischer Titel "Digital Health", auch belegbar in den Studiengängen: PMB-K, Phl, PMB-P, MeT, El-A, El-I

Modulname: Sustainability in Engineering

Modulname	Modulcode
Sustainability in Engineering	Ba – AW127
Modulverantwortliche/r	Fakultät
Prof. Dr. Christoph Gerhard	Ingenieurwissenschaften und Gesundheit
Dr. Saeedeh Aliaskarisohi	

Zuordnung zum Studiengang	
Ingenieurwissenschaften	

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	5	Wahlpflicht	3.0

Voraussetzungen laut Prüfungsordnung

Grundkenntnisse in linearer Algebra und Kommunikationstechnik sind von Vorteil, aber nicht zwingend erforderlich für das Verständnis des Moduls

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	SWS	Workload
1.	LV Sustainability in Engineering	2.0	40∨ 50Ü
Summe (Pflicht und Wahlpflicht)		2.0	90

Qualifikationsziele

- Verständnis der relevanten Aspekte der Nachhaltigkeit in der Industrie
- Erkenntnisgewinn und Wissen zu Methoden der Nachhaltigkeitsbewertung
- Fähigkeiten und Fertigkeiten in der zielgerichteten wissenschaftlichen (online-)Recherche
- Präsentation von Rechercheergebnissen

Gruppen- und Teamfähigkeit

Zu erbringende Prüfungsleistung / Studienleitstung

P, R, E / -

Modulname		Modulcode
Videotechnik		Ba - AW127
Veranstaltungsname	Veranstaltungsart	Veranstaltungscode
LV Videotechnik	Vorlesung/Übung	Ba – AWI27-VI
Lehrende/r	Fakultät	Arbeitsaufwand
Prof. Dr. Christoph Gerhard Dr. Saeedeh Aliaskarisohi	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 90 WS Eigenstudium: 0 WS

Angebotshäufigkeit	ECTS	SWS	Sprache
in jedem Semester	3.0	2.0	deutsch

- Introduction to Sustainability in Engineering.
- The Triple Bottom Line
- Life Cycle Assessment (LCA)
- Sustainable Materials and Design
- Energy Efficiency and Renewable Energy
- Waste Reduction and Management
- Sustainable Manufacturing Practices
- Sustainable Transportation
- Regulations and Standards for Sustainability
- Emerging Technologies and Innovations

Zusätzliche Angaben

auch PO21, auch Belegbar in den Studiengängen: Phl, MeT, El-A, El-I

Toleranzanalyse und Toleranzrechnung

Modulname	Modulcode
Toleranzanalyse und Toleranzrechnung	Ba – AW128
Modulverantwortliche/r	Fakultät
Prof. DrIng. André Müller	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang	
Ingenieurwissenschaften	

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	4	Wahlpflicht	3.0

Voraussetzungen laut Prüfungsordnung
Konstruktion I

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
I. LV Toleranzanalyse und Toleranzrechnung		Wahlpflicht	2.0	IV IÜ
Sum	2.0	90		

Qualifikationsziele

I. Wissen:

Die Studierenden können grundlegende Begriffe und Konzepte benennen und beschreiben, insbesondere:

- Toleranzen und deren Bedeutung für Funktionalität und Herstellbarkeit
- Passungen
- Unterschiedliche Ansätze der Toleranzanalyse (arithmetisch vs. statistisch)
- Werkzeuge und Softwarelösungen zur Toleranzanalyse (Excel)

2. Verstehen:

Die Studierenden können:

- Den Einfluss von Toleranzen auf die Fertigungsqualität und Produktfunktion erklären
- Den Unterschied zwischen arithmetischer und statistischer Toleranzanalyse erläutern
- Die Rolle von Toleranzanalysen im Produktentstehungsprozess einordnen
- Die Relevanz von Form- und Lagetoleranzen für die Maßkettenermittlung begründen
- Die Möglichkeiten und Grenzen verschiedener Toleranzanalyseverfahren bewerten

3. Anwenden:

Die Studierenden können:

- Passungen auswählen und berechnen
- Maßketten an Baugruppen mit der arithmetischen Methode berechnen
- Verfahren zur Berechnung statistischer Maßketten einsetzen
- Software-Tools (Excel) gezielt für 2D-Toleranzanalysen verwenden
- Toleranzanalysen in reale Konstruktionsprozesse integrieren

4. Analysieren:

Die Studierenden können:

- Den Einfluss von Wahrscheinlichkeitsverteilungen, Mittelwerte und Standardabweichungen und deren Korrelationen auf die statistische Toleranzanalyse untersuchen
- Toleranzketten hinsichtlich Funktionserfüllung und wirtschaftlicher Fertigungstoleranzen bewerten
- Kritische Toleranzen identifizieren und gezielt optimieren
- Anwendungsgrenzen und Fehlannahmen beider Methoden (arithmetisch/statistisch) analysieren

5. Synthetisieren:

Die Studierenden können:

- Eigene Strategien zur Toleranzoptimierung entwickeln
- Toleranzrechnung eigenständig in den Konstruktionsprozess integrieren und mit angrenzenden Disziplinen (Fertigung, Qualität) verknüpfen
- Toleranzanalysen im Team durchführen, Ergebnisse kritisch diskutieren und dokumentieren

Zu erbringende Prüfungsleistung

Κ1

Modulname		Modulcode
Toleranzanalyse und Toleranzrechnung	Ba – AW128	
Veranstaltungsname	Veranstaltungsart	Veranstaltungscode
LV Toleranzanalyse und Toleranzrechnung	Vorlesung/Übung	Ba – AW128-VI
Lehrende/r	Fakultät	Arbeitsaufwand
Prof. DrIng. André Müller	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 30 WS Eigenstudium: 60 WS

Das Modul Toleranzanalyse und Toleranzrechnung vermittelt grundlegende und vertiefte Kenntnisse zur 2D-Toleranzanalyse, insbesondere zur arithmetischen und statistischen Berechnung von komplexeren Maßketten. Die Studierenden lernen, Toleranzen gezielt zu analysieren, um Montierbarkeit, Funktionalität und Wirtschaftlichkeit zu gewährleisten.

Die Grundlagen und Auswahl von Passungen werden ebenso behandelt wie die arithmetische Toleranzanalyse. Darauf folgt die statistische Toleranzanalyse, die stochastische Effekte und Wahrscheinlichkeitsverteilungen einbezieht.

Die theoretischen Grundlagen werden durch praktische Anwendung an Industriebeispielen durch softwaregestützte Toleranzanalysen (Excel) vertieft. Durch eine Kombination aus Theorie und Praxis erwerben die Studierenden essenzielle Kompetenzen zur effizienten Toleranzgestaltung in technischen Systemen.

Angebotshäufigkeit	ECTS	SWS	Sprache
Winter- und Sommersemester	3.0	2.0	deutsch

Zusätzliche Angaben	

Name des Studiengangs: Bachelor Ingenieurwissenschaften

Biomedizinische Physik / Physio.

Modulname:

Modulname	Modulcode
Biomedizinische Physik und physiologische Systeme	Ba – AW 129
Modulverantwortliche/r	Fakultät
Prof. Dr. Stephan Wieneke	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang

Bachelor Medizintechnik, Bachelor Ingenieurwissenschaften

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	4	Wahlpflicht	3.0

Voraussetzungen laut Prüfungsordnung	
-	

Zugehörige Lehrveranstaltungen:

Nr	Veranstaltungsname	Belegungstyp	SWS	Workload
1.	LV Biomedizinische Physik und physiologische Systeme		2.0	2V 0Ü 0L 0S 0P
Summe (Pflicht und Wahlpflicht)			2.0	90

Oualifikationsziele

Die Studierenden sind in der Lage

- die physikalischen Grundlagen der wichtigsten physiologischen Systeme benennen und erläutern
- die Zusammenhänge zwischen biologischen Funktionen und physikalischen Prinzipien beschreiben
- grundlegende Konzepte der Biomechanik, Strömungsdynamik und Thermodynamik im Körperkontext erklären
- physikalische Modelle auf physiologische Prozesse anwenden (z.B. Druck-Volumen-Arbeit im Herzen, Atemmechanik)
- physiologische Größen mithilfe geeigneter Gleichungen berechnen und interpretieren
- einfache Problemstellungen aus der Biomedizin mit physikalischen Methoden lösen
- den Einfluss physikalischer Parameter auf die Funktion biologischer Systeme analysieren (z.B. Einfluss des Gefäßdurchmessers auf den Blutfluss)
- unterschiede und Gemeinsamkeiten der physikalischen Prinzipien in verschiedenen Organsystemen herausarbeiten
- Messdaten aus physiologischen Systemen kritisch auswerten

Zu erbringende Prüfungsleistung / Studienleistung

KI oder HA

Name des Studiengangs: Bachelor Ingenieurwissenschaften

Modulname:

Modulname			Modulcode			
Biomedizinische Physik und physiologische Systeme				Ba – AW129		
Veranstaltungsname \		Veranstaltungsart		rt	Veranstaltungscode	
LV Biomedizinische Physik und physiologische Systeme Vorlesung/Übung		Ba – AW I 29-VI				
Lehrende/r		Fakultät			Arbeitsaufwand	
Prof. Dr. Stephan Wieneke	Or. Stephan Wieneke Ingenieurwissenschaften und Gesundheit		Präsenzstudium: 30 WS Eigenstudium: 60 WS			
Angebotshäufigkeit	ECTS	SWS Sprache		Sprache		
nur im Sommersemester	3.0		2.0	deutsch		

Inhalte

Die Vorlesung beinhaltet folgende Themen:

- Einführung in die biomedizinische Physik und ihre Relevanz für die Analyse physiologischer Systeme
- Respiratorisches System: Gasaustausch, Atemmechanik, Atemarbeit, Diffusion, Partialdruck
- Kardiovaskuläres System: Blutdruck, Strömungsdynamik (Kontinuitätsgleichung, Hagen-Poiseuille-Gesetz), Pulswellen, Herzmechanik
- Nervensystem: Reizweiterleitung, Aktionspotenzial, elektrische Eigenschaften von Neuronen, Synapsen
- Muskuloskeletales System: Muskelkraft, Hebelprinzip, Biomechanik, Elastizität, E-Modul, Belastung von Knochen und Gelenken
- Verdauungssystem: Transportprozesse, mechanische und chemische Zerkleinerung, Energieaufnahme
- Harnsystem: Filtrationsprozesse in der Niere, osmotische Druckverhältnisse, Flüssigkeitshaushalt
- Endokrines System: Signalübertragung über Hormone, Konzentrations- und Zeitabhängigkeit
- Hautsystem: Thermoregulation, Wärmetransport, mechanische Eigenschaften der Haut
- Fortpflanzungssystem: Mechanismen und energetische Aspekte von Befruchtung und Schwangerschaft
- Mathematische Modellierung und Rechenbeispiele zur Quantifizierung physiologischer Prozesse

Zusätzliche Angaben

auch PO21, englischer Titel "biomedical Physics and Physiological Systems"

Modulname	ModulcoLatex de	
Fundamentals	Ba – AW130	
Modulverantwortliche/r	Fakultät	
Prof. Dr. Achim Ibenthal	Ingenieurwissenschaften und Gesundheit	

Zuordnung zum Studiengang	
Ingenieurwissenschaften	

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
ein Semester	4	Wahlpflicht	3.0

Voraussetzungen laut Prüfungsordnung

Grundkenntnisse in linearer Algebra und Kommunikationstechnik sind von Vorteil, aber nicht zwingend erforderlich für das Verständnis des Moduls

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname		SWS	Workload
1.	LV Latex Fundamentals		2.0	2V 0Ü
				0L 0S 0P
Summe (Pflicht und Wahlpflicht)		2.0	90	

Qualifikationsziele

Erstellung technisch-wissenschaftlicher Dokumentation mit dem Textsatzsystem Latex. Nach erfolgreichem Abschluss sind Studierende in der Lage, Abschlussarbeiten, Artikel, Bücher und Präsentationen in professionellem Layout zu halten inkl. Formelsatz, Tabellensatz, und der Einbindung von Grafiken und multimedialen Inhalten.

Zu erbringende Prüfungsleistung / Studienleitstung

PR oder ST / -

Modulname	Modulcode		
Videotechnik		Ba – AW130	
Veranstaltungsname	Veranstaltungsart	Veranstaltungscode	
LV Videotechnik	Vorlesung/Übung	Ba – AWI30-VI	
Lehrende/r	Fakultät	Arbeitsaufwand	
Prof. Dr. Achim Ibenthal	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 30 WS Eigenstudium: 60 WS	

Angebotshäufigkeit	ECTS	SWS	Sprache
in jedem Semester	3.0	2.0	deutsch

Erstellung technisch-wissenschaftlicher Dokumentation mit dem Textsatzsystem Latex. Nach erfolgreichem Abschluss sind Studierende in der Lage, Abschlussarbeiten, Artikel, Bücher und Präsentationen in professionellem Layout zu halten inkl. Formelsatz, Tabellensatz, und der Einbindung von Grafiken und multimedialen Inhalten.

Zusätzliche Angaben

auch PO21, englischer Titel "Video Technologies", auch Belegbar in den Studiengängen: Phl, MeT, El-A, El-I