Modulhandbuch

Pflichtmodule Für den Studiengang

"Medizintechnik"

Bachelor of Engineering

HAWK Hochschule für angewandte Wissenschaft und Kunst Fachhochschule Hildesheim/Holzminden/Göttingen Fakultät Ingenieurwissenschaften und Gesundheit

Modulhandbuch 2025

Pflichtmodule für den Studiengang "Medizintechnik, B.Eng."

Für den Studiengang B.Eng. Medizintechnik gelten in Bezug auf das ingenieurwissenschaftliche Kerncurriculum das Modulhandbuch des Studiengangs "Ingenieurwissenschaften" sowie das Modulhandbuch für die Wahpflichtfächer des Studiengangs "Ingenieurwissenschaften" in der jeweiligen aktuellen Fassung.

Kerncurriculum "Ingenieurwissenschaften"

Fachspezifische Module Medizintechnik

Semester						
1	Differential- und Integralrechnung	Dynamik	Informatik		Grundlagen der Medizintechnik 1	Medizinische Grundlagen 1
2	Analytische Geometrie und lineare Algebra (AGLA)	Schwingungen / Wellen / Thermodynamik	Vertiefung Informatik		Grundlagen der Medizintechnik 2	Medizinische Grundlagen 2
3	Elektrotechnik	Numerische Mathematik	Statik		Medizin 3 – Operative Medizin	Konstruktionslehre und CAD in der Medizintechnik
4	Grundlagen Elektronik	Werkstoffkunde und Chemie	Bildverarbeitung in der Medizin		IPC – Interprofessional Collaboration	Medizininformatik
5	Individuelles Profilstudium (IPS)	Advanced Wahlpflicht	Advanced Wahlpflicht		Advanced Wahlpflicht	Wissenschaftliches Arbeiten Technisches Englisch
6	Bache	Bachelor Projektarbeit Bachelor Abschlussarbeit				ssarbeit

Das vorliegende Modulhandbuch umfasst lediglich die fachspezifischen Pflichtmodule des Studienganges.

Modulhandbuch 2025

Pflichtmodule für den Studiengang "Medizintechnik, B.Eng."

Erläuterungen / Abkürzungen:					
Prüfungsformen:	Zeitumfang (V):	BA = Bachelor			
		MA = Master			
A = Abschlussarbeit	s. Modulblatt	SWS = Semesterwochenstunden			
BÜ = Berufspraktische Übungen	(xh)	Präsenz = Präsenzzeit in Stunden			
E = Entwurf	90 – 180h	Eigenst. = Eigenstudium in Stunden			
EA = Experimentelle Arbeit	120 – 300h	Cr. = Credits (ECTS-Punkte)			
EDRP = Erstellung und Dokumentation	xh	SL = Studienleistung			
von Rechnerprogrammen.		PL = Prüfungsleistung			
Die Bearbeitungszeit als Studien- leistung legt die Prüferin oder der		PVL = Vorleistung als Voraussetzung zur			
Prüfer fest, bei Nichtfestlegung gilt		Zulassung zur Prüfung			
ein Semester.		V = Vorbereitung			
EX = Exkursion	20.001	P = Prüfung			
K = Klausur (xh)	30-60h				
FS = Fallstudie	s. Modulblatt				
	60 – 120h				
H = Hausarbeit	yS				
HO = Hospitationsbogen	1h				
KQ = Kolloquium	30h 0.5h P				
LP = Laborpraktikum	90 – 150h				
M = Mündliche Prüfung	30h 0.5h P				
	0.5111				
OB = Open Book	xh				
PA = Projektarbeit	90 – 180h				
PF = Portfolio	60 – 120h				
PR = Präsentation	30 – 60h, 0.3h P				
R = Referat	30 – 60h, 0.3h P				
SE = Systementwurf	120 – 180h				
ST = Studienarbeit	90 – 180h				
xh = Bearbeitungszeit in x Zeitstunden		Die Modulprüfungen können von der			
yS = Anzahl Seiten Text der schriftlichen Ausarbeitung		Prüfungskommission durch andere Prüfungsarten ersetzt werden (siehe			
+ = und; Definition mehrerer Teilleistungen als eir Gesamtprüfungsleistung, in Anteilig gleicher Gew anderweitig definiert; z.B. (XX% +YY%)		Prüfungsordnung – allgemeiner Teil).			
/ = oder; Trennung in einer Auflistung möglicher Auswahl wird zu Semester- beginn von Dozierel bekanntgegeben.					

Modulname	Modulcode
Medizinische Grundlagen 1	BA1 - M1
Modulverantwortliche/r	Fakultät
Prof. Dr. Christoph Rußmann	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang
MedTech

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
1 Semester	1.	Pflicht	6

Voraussetzungen laut Prüfungsordnung	
	7

N	. Veranstaltungsname		Belegungstyp	SWS	Workload
1	Medizinische Grundlagen 1		Pflicht	6	180
Summe (Pflicht und Wahlpflicht)			6	180	

Qualifikationsziele

Verständnis der grundlegenden anatomischen Strukturen und physiologischen Prozesse erreichen. Erlernen der Nutzung korrekter medizinischer Fachbegriffe zur präzisen Kommunikation.

Anwendung des Wissens zur Analyse und Beschreibung einfacher biologischer Systeme. Detailliertes Verständnis der genetischen Grundlagen und deren medizinische Relevanz.

Kompetenzen

Wissen

Studierende benennen grundlegende anatomische Strukturen und physiologische Prozesse des menschlichen Körpers.

Sie identifizieren wesentliche Funktionen und Prozesse des Herz-Kreislaufsystems, Atmungsund Verdauungssystems.

Zudem beschreiben sie grundlegende Konzepte der Röntgentechniken und nuklearmedizinischen Verfahren. Mikroskopische Techniken zur Analyse einfacher biologischer Proben können dargestellt werden.

Verständnis

Zusammenhänge zwischen anatomischen Strukturen und deren physiologischen Funktionen werden von Studierenden erläutert.

Die Bedeutung der Humangenetik und deren Einfluss auf Erbkrankheiten werden diskutiert.

Anwendung

Fachbegriffe werden korrekt in der Beschreibung medizinischer Sachverhalte verwendet. Anatomische Strukturen und physiologische Prozesse können mit Funktionen und Prozessen des menschlichen Körpers wechselseitig in Zusammenhang gebracht werden.

Zu erbringende Prüfungsleistung								
K2 (benotet) + PVL HO (unbenotet)								
Zusammensetzung der Modulprüfu	Zusammensetzung der Modulprüfung / Modulnote							
100% K2								
Modulname Modulcode								
Medizinische Grundlagen 1 BA1 - M1								
Veranstaltungsname	Veranstaltungsart	Veranstaltungscode						
Medizinische Grundlagen 1	BA1 - M1							
Lehrende/r Fakultät Arbeitsaufwand								
UMG	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 90 WS Eigenstudium: 90 WS						

Angebotshäufigkeit	ECTS	SWS	Sprache	Gruppengröße
nur im WiSe	6	6	Deutsch	30

Inhalte

Grundlagen der mikroskopischen und makroskopischen Anatomie.

Grundlagen der Physiologie und physiologischen Prozesse.

Einführung in das Herz-Kreislauf-, Atmungs- und Verdauungssystem.

Grundlagen der Mikroskopie für medizinische Anwendungen.

Einblicke in Röntgen- und nuklearmedizinische Techniken. Grundlagen der Humangenetik.

Grundlagen der Biologie und Zellbiologie Grundlagen der klinischen Chemie Grundlagen der Transfusionsmedizin

Hospitationen/(Labor-)Führungen und Praktika in geeigneten klinischen Abteilungen der Fachbereiche des Kooperationspartners UMG.

Modulname	Modulcode
Grundlagen der Medizintechnik 1	BA1 - MT1
Modulverantwortliche/r	Fakultät
Prof. Dr. Christoph Rußmann	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang MedTech

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
1 Semester	1.	Pflicht	6

Voraussetzungen laut Prüfungsordnung

Zugehörige Lehrveranstaltungen:					
Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload	
1.	Grundlagen der Medizintechnik 1 (Vorlesung)	Pflicht	4	135	
2.	Grundlagen der Medizintechnik 1 (Laborpraktikum)	Pflicht	1	45	
Sumi	Summe (Pflicht und Wahlpflicht)				

Wissen und Transfer

Die Studierenden kennen die grundlegenden Funktionsprinzipien medizintechnischer Geräte zur Diagnostik und Therapie sowie der bildgebenden Verfahren (Radiologie, Nuklearmedizin, Ultraschall). Sie können ihr Wissen auf unterschiedliche klinische Anwendungsfelder übertragen und technische Verfahren hinsichtlich ihres Einsatzes im medizinischen Kontext einordnen. Sie kennen die gesetzlichen Rahmenbedingungen (insbesondere Strahlenschutz und Dosimetrie) für den sicheren Betrieb dieser Technologien.

Verstehen

Die Studierenden verstehen die physikalischen, technischen und biologischen Grundlagen der medizinischen Bildgebung sowie der Signalverarbeitung biologischer Daten. Sie erfassen Zusammenhänge zwischen Geräteeigenschaften, Messprinzipien und diagnostischer Aussagekraft. Sie begreifen die Bedeutung von Qualitätssicherung und Sicherheitsvorschriften bei der Anwendung medizinischer Technologien.

Analyse

Die Studierenden sind in der Lage, medizintechnische Systeme hinsichtlich ihrer Funktion und Eignung für konkrete diagnostische oder therapeutische Fragestellungen zu analysieren. Sie können technische Verfahren bewerten, vergleichen und Optimierungspotenziale identifizieren. Zudem sind sie in der Lage, biologische Signale differenziert zu interpretieren und in diagnostische Kontexte einzuordnen.

Zu erbringende Prüfungsleistung				
K2 (benotet) + PVL LP (unbenotet)				
Zusammensetzung der Modulprüfur	ng / Modulnote			
100% K2				
Modulname Modulcode				
Grundlagen der Medizintechnik 1		BA1 - MT1		
Veranstaltungsname	Veranstaltungsart	Veranstaltungscode		
Grundlagen der Medizintechnik 1 (Vorlesung)	Vorlesung	BA1-MT1		
Lehrende/r	Fakultät	Arbeitsaufwand		
Prof. Dr. rer.nat. Stephan Wieneke, Prof. Dr. Christoph Rußmann	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 60 WS Eigenstudium: 75 WS		

Angebotshäufigkeit	ECTS	SWS	Sprache	Gruppengröße
nur im WiSe	4	4	Deutsch	30

- Grundlagen der Biosignale (physiologische Entstehung und Eigenschaften, typische Signalformen und Frequenzbereiche)
- Sensorprinzipien (chemische-, elektrische- und mechanische Wandler)
- Medizinische Messtechnik (Signalverarbeitung Filterung, Verstärkung, etc.)
- Medizinische Diagnostiksysteme (Aufbau, Wirkprinzip und Anwendungen von Geräten der Funktionsdiagnostik – EKG, EMG, EEG, Blutdruckmessung, Herzzeitvolumen, Spirometrie, Sturzsensoren und Bewegungserfassungsysteme, etc.)
- Anwendung und praktische Beispiele (Analyse und Interpretation realer Biosignale)
- Zukünftige Trends in der Funktionsdiagnostik
- Grundlagen der mikroskopischen Verfahren und labordiagnostischen Methoden in der medizinischen
 Analytik.
- Einführung in die medizinische Bildgebung mit Fokus auf:Radiologie (Röntgen, CT, MRT), Nuklearmedizin (Szintigrafie, PET), Ultraschallverfahren
- Gesetzlicher Rahmen und Strahlenschutz
- Anforderungen an den sicheren Betrieb von Medizinprodukten in Radiologie und Nuklearmedizin, inklusive: Strahlenschutzverordnung, Dosimetrie und Strahlenexposition

Modulname	Modulcode		
Grundlagen der Medizintechnik 1	BA1 - MT1		
Veranstaltungsname	Veranstaltungsart	Veranstaltungscode	
Grundlagen der Medizintechnik 1 (Laborpraktikum)	Praktikum	BA1 - MT1	
Lehrende/r	Fakultät	Arbeitsaufwand	
Prof. Dr. rer.nat. Stephan Wieneke, Prof. Dr. Christoph Rußmann	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 15 WS Eigenstudium: 30 WS	

Angebotshäufigkeit	ECTS	SWS	Sprache	Gruppengröße
nur im WiSe	2	1	Deutsch	16

Elektrophysiologie:

- Herzfrequenzmessung: Bestimmung der Pulsfrequenz mittels Pulssensor oder EKG.
- Fitnessdiagnostik: Analyse von Herzfrequenzveränderungen bei Belastungstests.
- EOG: Messung von Augenbewegungen zur Analyse der Blickrichtung.
- Lesegeschwindigkeit: Erfassung von Augenbewegungen beim Lesen.
- EMG: Messung elektrischer Muskelaktivität zur Beurteilung von Muskelkraft und Ermüdung.
- EKG: Ableitung der Herzaktivität zur Erkennung von Rhythmusstörungen.

Humanphysiologie:

- Stroop-Test: Untersuchung der kognitiven Reaktionszeit bei Farb-Wort-Konflikten.
- Pulsanalyse: Vergleich von Ruhe- und Belastungspuls zur Einschätzung der Kreislaufbelastung.
- Blutdruckmessung: Manuelle oder automatische Bestimmung von systolischem und diastolischem Druck.
- Lungenfunktion: Spirometrie zur Ermittlung von Atemvolumina und -fluss.

Modulname	Modulcode
Medizinische Grundlagen 2	BA2 - M2
Modulverantwortliche/r	Fakultät
Prof. Dr. Christoph Rußmann	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang MedTech

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
1 Semester	2.	Pflicht	6

Voraussetzungen laut Prüfungsordnung	
	7

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
1.	Medizinische Grundlagen 2	Pflicht	6	180
Summe (Pflicht und Wahlpflicht)		6	180	

Qualifikationsziele

Erweiterung des Wissens über menschliche Körpersysteme und deren Erkrankungen. Fähigkeit zur Erkennung und Analyse pathologischer Prozesse in verschiedenen Körpersystemen.

Verständnis biochemischer Prozesse und deren Bedeutung in der Medizin.

Kompetenzen Wissen:

Studierende besitzen vertieftes Wissens im Bereich der HNO, Augenheilkunde, Urologie und Nierenphysiologie.

Verständnis:

Sie verstehen pathologische Prozesse und deren Erkennung.

Zudem besitzen sie die Fähigkeit, biochemische Prozesse im medizinischen Kontext zu erklären.

Anwendung:

Studierende wenden diagnostische Verfahren zur Interpretation und Analyse medizinischer Daten an.

Zu erbringende Prüfungsleistung					
K2 (benotet) + PVL HO (unbenotet)					
Zusammensetzung der Modulprüfur	ng / Modulnote				
100% K2					
Modulname Modulcode					
Medizinische Grundlagen 2		BA2 - M2			
Veranstaltungsname	Veranstaltungsart	Veranstaltungscode			
Medizinische Grundlagen 2	Vorlesung	BA2 - M2			
Lehrende/r	Fakultät	Arbeitsaufwand			
UMG	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 90 WS Eigenstudium: 90 WS			

Angebotshäufigkeit	ECTS	SWS	Sprache	Gruppengröße
nur im SoSe	6	6	Deutsch	30

Vertiefung in HNO, Augenheilkunde, Urologie und Nierenphysiologie.

Detailstudie des zentralen Nervensystems, Neurologie, Onkologie, Dermatologie und Kardiologie.

Grundlagen der Pathologie, des Verdauungstrakts sowie der Zahnerhaltung und Kieferorthopädie.

Wissenserwerb über Hämatologie und Blut. Intensive Betrachtung biochemischer Prozesse.

Hospitationen/(Labor-)Führungen in geeigneten klinischen Abteilungen der Fachbereiche des Kooperationspartners UMG.

Modulname	Modulcode
Grundlagen der Medizintechnik 2	BA2 - MT2
Modulverantwortliche/r	Fakultät
Prof. Dr. Stephan Wieneke	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang
MedTech

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
1 Semester	2.	Pflicht	6

Voraussetzungen laut Prüfungsordnung	

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
1.	Grundlagen der Medizintechnik 2 (Vorlesung)	Pflicht	4	135
2.	Grundlagen der Medizintechnik 2 (Laborpraktikum)	Pflicht	1	45
Summe (Pflicht und Wahlpflicht)		5	180	

Qualifikationsziele

Wissen und Transfer

Die Studierenden kennen die physikalischen Grundlagen der Optik und Laserphysik sowie deren Bedeutung für medizinische Anwendungen. Sie können dieses Wissen auf verschiedene Anwendungsfelder übertragen, insbesondere im Bereich der Gewebeinteraktion und Lasermedizin.

Verstehen

Die Studierenden verstehen die optischen und thermischen Eigenschaften von biologischem Gewebe sowie die diagnostischen und therapeutischen Wirkprinzipien medizinischer Lasersysteme. Sie erfassen den Zusammenhang zwischen physikalischer Grundlage, technischer Umsetzung und klinischem Nutzen.

Analyse

Die Studierenden sind in der Lage, den regulatorischen Rahmen (u.a. MDR, MPDG, MEDDEV 2.7.1) für Medizinprodukte kritisch zu analysieren. Sie wenden diese Kenntnisse in praxisorientierten Fallstudien an und reflektieren Herausforderungen im Entwicklungs- und Zulassungsprozess.

Anwendung und Kommunikation

Durch interdisziplinäre Teamarbeit entwickeln die Studierenden eigenständig Lösungen im Bereich der Medizintechnik-Entwicklung und präsentieren ihre Ergebnisse adressatengerecht. Sie stärken dabei ihre Problemlösungs- und Kommunikationskompetenz im Kontext regulatorischer Anforderungen und technischer Innovation.

Zu erbringende Prüfungsleistung				
K2 (benotet) + PVL LP (unbenotet)				
Zusammensetzung der Modulprüfung / Modulnote				
100% K2				
Modulname Modulcode				
Grundlagen der Medizintechnik 2		BA2 - MT2		
Veranstaltungsname Veranstaltungsart		Veranstaltungscode		
Grundlagen der Medizintechnik 2 (Vorlesung)				
Lehrende/r Fakultät		Arbeitsaufwand		
Prof. Dr. rer.nat. Stephan Wieneke, Prof. Dr. Christoph Rußmann	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 60 WS Eigenstudium: 75 WS		

Angebotshäufigkeit	ECTS	SWS	Sprache	Gruppengröße
nur im SoSe	4	4	Deutsch	30

- Grundlagen der Emission und Absorption elektromagnetischer Strahlung
- Technische Grundlagen medizinischer Lasersysteme (Strahlführung, Sicherheit, etc.)
- Theoretische Grundlagen der Gewebeoptik (Streuung, Absorption, Anisotropie)
- Wechsel-Wirkungsmechanismen von Laserstrahlung in biologischem Gewebe (photochemische Prozesse, thermische Effekte, nichtlineare Effekte)
- Lasereinsatz in der Diagnostik (LSM, STED-Mikroskopie, OCT, Durchflusszytometrie und verwandte Verfahren)
- Lasereinsatz in der Therapie (LITT, LISL, LASIK, TMLR, etc.)
- Regulatorische Rahmenbedingungen für Medizinprodukte (MDR, MPDG, MEDDEV 2.71
- Fallstudien zur Produktentwicklung und Zulassung in der Medizintechnik

Modulname		Modulcode		
Grundlagen der Medizintechnik 2		BA2 - MT2		
Veranstaltungsname Veranstaltungsart		Veranstaltungscode		
Grundlagen der Medizintechnik 2 (Laborpraktikum)		BA2 - MT2		
Lehrende/r	Fakultät	Arbeitsaufwand		
Prof. Dr. rer.nat. Stephan Wieneke, Prof. Dr. Christoph Rußmann	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 15 WS Eigenstudium: 30 WS		

Angebotshäufigkeit	ECTS	SWS	Sprache	Gruppengröße
nur im SoSe	2	1	Deutsch	16

Sonographie:

- Doppler-Ultraschall: Messung von Strömungsgeschwindigkeiten und Flussrichtungen in Gefäßen, z.B. bei Stenosen.
- Echokardiographie: Darstellung von Herzstruktur und -funktion in Echtzeit.
- B-Bild-Ultraschall: Grundlagen der Bildentstehung und Schallausbreitung am Dummy-Arm.
- Simulation einer Stenose: Analyse von Strömungsveränderungen bei Gefäßverengung mit Doppler- und B-Mode.

Röntgen:

- Computertomographie (CT): Erstellung und Rekonstruktion von Schnittbildern.
- Artefakterkennung: Analyse typischer Bildstörungen und deren Ursachen.
- Röntgenspektrum: Aufnahme des Energiespektrums in Abhängigkeit von Anodenspannung und Filterung.
- Goniometrie: Bestimmung von Materialstrukturen durch Streuwinkelmessung.
- Radiographie: Klassische Röntgenaufnahmen zur Darstellung innerer Strukturen.

Modulname	Modulcode	
Operative Verfahren BA3 - M3		
Modulverantwortliche/r Fakultät		
Prof. Dr. Christoph Rußmann	Ingenieurwissenschaften und Gesundheit	

Zuordnung zum Studiengang	
MedTech	

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
1 Semester	3.	Pflicht	6

Voraussetzungen laut Prüfungsordnung	

1.	Operative Verfahren	Pflicht	5	180
	me (Pflicht und Wahlpflicht)	1 IIICH	<i>E</i>	180

Qualifikationsziele

Wissen und Transfer:

- Studierende kennen und verstehen Hygienevorschriften und Sterilisationsverfahren. Sie erläutern die Bedeutung der Hygiene im medizinischen Umfeld mit Bezug auf simulierte klinische Szenarien. Wissen über Hygiene und Sterilität in praktischen und simulierten klinischen Szenarien wird adäquat angewand.
- Sie kennen die medizinischen Grundkonzepte und können operative Verfahren und deren Anwendung beschreiben
- Technische Instrumente und deren Funktionsweise werden erkannt und können beschrieben werden.
- Medizinischen Anforderungen an Implantate und Prothesen können unter Anwendung des Verständnisses für materialbezogene Grundlagen erläutert werden.
- Studierende verstehen Materialbeschaffenheiten für medizinische Anwendungen. Sie vergleichen medizinische Materialien hinsichtlich ihrer Eignung für Implantate und wenden dazu chemische und physikalische Grundlagenkenntnisse an. So identifizieren sie Merkmale und Vorteile spezifischer Materialien für Implantate.
- Innovative Techniken und Entwicklungen in der operativen Medizin werden erkannt sowie gestützt durch ein grundlegendes Wissen über Technologiefortschritte und deren medizinische Relevanz eingeordnet. So können geeignete technische Instrumente für spezifische operative Eingriffe identifiziert und ausgewählt werden sowie für die Planung einfacher operativer Verfahren berücksichtigt werden. Hierdurch erfolgt eine Einbettung innovativer medizinischer Technologien in bestehende Behandlungskonzepte durch wissenschaftlich fundiertes Verständnis.

Verstehen:

- Zusammenfassen von Informationen zu operativen Verfahren unter Zuhilfenahme anatomischer und physiologischer Kenntnisse.
- Erklären der Grundlagen der 3-dimensionalen Planung in der Implantologie.

Analyse:

- Studierende vergleichen und unterscheidenverschiedene Sterilisationsverfahren sowie deren Einsatzmöglichkeiten.
- Analysieren der Funktionalitäten von medizinischen Instrumenten und deren innovativen Fortschritten gestützt auf vorhergehende technische Grundlagen.
- Die Studierenden besitzen Kentnisse über die Prozesse zur Aufbereitung von Medizinprodukten. Sie sind in der Lage den Prozesse der Medizinprodukteaufbereitung hinsichtlich Effizienz und Sicherheit im Kontext der erlernten medizinischen Grundzusammenhänge zu untersuchen.

Erfahrungen durch Hospitationen:

- Beobachten der praktischen Umsetzung von Hygienemaßnahmen in realen medizinischen Umgebungen.
- Gewinnen von Einblicken in operative Verfahren und den Einsatz technischer Instrumente während Hospitationen im spezifoischen Arbeitsumfeld.
- Sammeln von Erfahrungen über die interprofessionelle Zusammenarbeit im klinischen Alltag, basierend auf Grundkenntnissen über medizinische Prozesse.

Zu erbringende Prüfungsleistung						
K2 (benotet) + PVL HO (unbenotet)						
Zusammensetzung der Modulprüfur	ng / Modulnote					
100% K2						
Modulname	Modulname Modulcode					
Operative Verfahren BA3 - M3						
Veranstaltungsname	Veranstaltungscode					
Operative Verfahren	Vorlesung	BA3 - M3				
Lehrende/r	Fakultät	Arbeitsaufwand				
Dozierende UMG	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 75 WS Eigenstudium: 105 WS				

Angebotshäufigkeit	ECTS	SWS	Sprache	Gruppengröße
nur im WiSe	6	5	Deutsch	30

- Hygienevorschriften (Hygiene- und Sterilisationsvorschriften/-verfahren sowie Maßnahmen der persönlichen und allgemeinen Hygiene, etc.)
- Operative Verfahren
- Technische Instrumente, Qualitätsmanagement, Zertifizierung und Innovationen
- Implantate und Prothesen: medizinische Anforderungen, Materialien und Materialbeschaffenheiten, 3-dimensionale Planung
- Aufbereitung von Medizinprodukten
- Hospitationen oder Führungen bei Operationen oder in geeigneten klinischen Abteilungen der Fachbereiche des Kooperationspartners UMG

Modulname	Modulcode
Konstruktionslehre und CAD in der Medizintechnik	BA3 - MT3
Modulverantwortliche/r	Fakultät
Prof. Dr. Christopher Frey	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang MedTech

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
1 Semester	3.	Pflicht	6

Voraussetzungen laut Prüfungsordnung

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
1.	Konstruktionslehre	Pflicht	2	90
2.	CAD Praktikum	Pflicht	2	90
Summe (Pflicht und Wahlpflicht)			4	180

Qualifikationsziele

Wissen, Verstehen und Anwenden:

Die Studierenden können einschlägige Normen des Fachgebietes benennen und erläutern sowie einfache Konstruktionszeichnungen lesen und fachgerecht interpretieren. Sie sind unter Berücksichtigung dieser Kenntnisse in der Lage eigenständig einfache Konstruktionen zu erstellen, wobei sie ebenfalls fertigungs- und funktionsgerechte Kriterie definiert und berücksichtigten.

Sie beherrschen den Umgang mit Standard-Normteilen und können diese in einfache Konstruktionen integrieren. Die CAD-Software und ihre Grundlegenden Funktionen werden logisch nachvollzogen und zur Umsetzung eigener Konstruktionen verwendet.

Zu erbringende Prüfungsleistung								
K2 (benotet) + PVL LP (unbenotet)	K2 (benotet) + PVL LP (unbenotet)							
Zusammensetzung der Modulprüfur	ng / Modulnote							
100% K2								
Modulname	Modulname Modulcode							
Konstruktionslehre und CAD in der Med	BA3 - MT3							
Veranstaltungsname	Veranstaltungscode							
Konstruktionslehre	Vorlesung	BA3-MT3						
Lehrende/r	Fakultät	Arbeitsaufwand						
Prof. DrIng. Christopher Frey	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 45 WS Eigenstudium: 45 WS						

Angebotshäufigkeit	ECTS	SWS	Sprache	Gruppengröße
nur im WiSe	3	2	Deutsch	60

Konstruktion

- Grundlagen technisches Zeichnen
- Normgerechtes Darstellen und Bemessen
- Projektionen, isometrische Darstellung
- Tolerierung und Toleranzrechnung
- Passungen
- Normgerechtes Darstellen von Oberflächen
- Gestaltungsabweichung
- Umgang mit Normteilen

Modulname	Modulcode	
Konstruktionslehre und CAD in der Med	BA3 - MT3	
Veranstaltungsname	Veranstaltungscode	
CAD Praktikum Übung		BA3 - MT3
_ehrende/r Fakultät		Arbeitsaufwand
Prof. DrIng. Christopher Frey	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 45 WS Eigenstudium: 45 WS

Angebotshäufigkeit	ECTS	SWS	Sprache	Gruppengröße
nur im WiSe	3	2	Deutsch	32

CAD-Labor

- Grundfunktionen: Profil, Rotation, Schnitte, Editierfunktionen
- Ableiten von technischen Zeichnungen
- Zusammenbauten
- Erstellen von Entwürfen

Modulname	Modulcode
IPC - Interprofessional Collaboration	BA4 - M4
Modulverantwortliche/r	Fakultät
Prof. Dr. Christoph Rußmann	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang
MedTech

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
1 Semester	4.	Pflicht	6

Voraussetzungen laut Prüfungsordnung	

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
1.	IPC Medizintechnik	Pflicht	2	50
2.	Neuroorthetik	Plicht	1	30
2.	Neuroprothetik Pflicht		2	75
Sum	Summe (Pflicht und Wahlpflicht)			180

Qualifikationsziele

Wissen und Verstehen / Anwenden und Transfer:

Die Studierenden kennen die professionsspezifischen Kompetenzbereiche der Medizintechnik und der weiteren Professionen am Gesundheitscampus Göttingen. Durch realistische Einschätzung und die Akzeptanz aller Kompetenzen und die Anwendung einer transparenten, gleichberechtigten und wertschätzenden Kommunikation kann in der Arbeit im interprofessionellen Team ergebnisorientiert an Entwicklungen zum Einsatz moderner Techniken in neuen Anwendungsgebieten gearbeitet werden.

Die Studierenden identifizieren (neue) Technologien, die zur Verbesserung der Lebensqualität von Patient*innen mit Haltungs- und Bewegungseinschränkungen zielgerichtet und bedürfnisorientiert eingesetzt werden kann. Sie kennen Funktionsweise sowie Präventions- und Rehabilitationsmöglichkeiten von Technologien, insbesondere Exoskeletten, können ihre Wirkweise beurteilen, diese in den Kontext wissenschaftlicher Forschungsergebnisse setzen und daraus Entwicklungspotentiale der Technologien ableiten.

Bezogen auf die Neuroprothetik kennen und verstehen Studierende messtechnische Methoden zur Ableitung, Analyse und Beurteilung von Biosignalen sowie myoelektrische Signale zur Prothesensteuerung, die Einsatzgebiete peripherer sowie zentraler Neuroprothesen, die Gestaltung und Funktionsweise von Mensch-Maschine-Schnittstellen.

Die Studierenden können Biosignale aufnehmen und weiterverarbeiten und damit unter Einbezug ihrer Kenntnisse von Mensch-Maschine-Schnittstellen Problemlösungsstrategien und moderne medizintechnische Hilfsmittel entwickeln.

Zu erbringende Prüfungsleistung						
H12 / PO + R						
Zusammensetzung der Modulprüful	ng / Modulnote					
H12 100% / PO (50%) + R (50%)						
Modulname	Modulcode					
IPC - Interprofessional Collaboration	BA4 - M4					
Veranstaltungsname	Veranstaltungsart	Veranstaltungscode				
IPC Medizintechnik	Seminar	BA4 - M4				
Lehrende/r	Fakultät	Arbeitsaufwand				
Studiengangkoordination	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 30 WS Eigenstudium: 20 WS				

Angebotshäufigkeit	ECTS	SWS	Sprache	Gruppengröße
nur im SoSe	2	2	Deutsch	40

Schlüsselkompetenzen und Skills der Medizintechnik

Interprofessionalität

- Interprofessionelle Teamarbeit in Konstellation mit unterschiedlichen Professionen und Kompetenzfeldern
- Kommunikation, insbesondere Kommunikationsregeln und -strategien in interprofessionellen Teamkonstellationen
- Interprofessionelles wissenschaftliches Arbeiten und Publizieren

Modulname	Modulcode		
IPC - Interprofessional Collaboration	BA4 - M4		
Veranstaltungsname	Veranstaltungsart	Veranstaltungscode	
Neuroorthetik	Seminar	BA4 - M4	
Lehrende/r	Fakultät	Arbeitsaufwand	
Studiengangkoordination	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 15 WS Eigenstudium: 15 WS	

Angebotshäufigkeit	ECTS	SWS	Sprache	Gruppengröße
nur im SoSe		1	Deutsch	30

- Technologien zur Verbesserung der Lebensqualität bei Haltungs- und Bewegungsstörungen (bei z.B. Traumen oder Entwicklungsstörungen)
- Funktionsweise, Forschungsergebnisse und Weiterentwicklungspotentiale von Exoskeletten und ihrer Wirkweise
- Präventions- und Rehabilitationsmöglichkeiten durch den Einsatz von Exoskeletten
- Einsatz von Messtechniken der Leistungsbewertung an Probanden

Modulname		Modulcode		
IPC - Interprofessional Collaboration		BA4 - M4		
Veranstaltungsname Veranstaltungsart		Veranstaltungscode		
Neuroprothetik	Seminar			
Lehrende/r	Fakultät	Arbeitsaufwand		
UMG	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 30 WS Eigenstudium: 35 WS		

Angebotshäufigkeit	ECTS	SWS	Sprache	Gruppengröße
nur im SoSe		2	Deutsch	60

Inhalte

Neuroprothetik

- Einführung in die Neurophysik
- Mensch-Maschine-Interface
- Einführung in die Programmierung mittels der Software MathLab
- Einführung in die Signalverarbeitung (Myosignale) für die Prothesensteuerung
- Physiologie der Biosignale, Aufnahme der Signale sowie Weiterverarbeitung
- Assistive Technologien und moderne Prothetik
- Unterarmprothesen: moderne Steuerungstechnologien
- Implantierbare Systeme/Sensoren in der Neurorehabilitation
- -Neuroethik

Modulname	Modulcode
Bildverarbeitung in der Medizin	BA4 - MT4
Modulverantwortliche/r	Fakultät
Prof. Dr. rer. nat. Roman Grothausmann	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang
MedTech

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
1 Semester	4.	Pflicht	6

Voraussetzungen laut Prüfungsordnung	
	7

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
1.	Bildverarbeitung in der Medizin (Vorlesung)	Pflicht	3	100
2.	Bildverarbeitung in der Medizin (Praktikum)	Pflicht	2	80
Summe (Pflicht und Wahlpflicht)			5	180

Qualifikationsziele

Verständnis der Grundlagen digitaler Bildverarbeitung erreichen.

Erlernen der Nutzung korrekter Vorgehensweisen in der medizinischen Bildverarbeitung zur präzisen Programmierung.

Anwendung des Wissens zur Analyse und Beschreibung einfacher Zusammenhänge in der medizinischen Bildverarbeitung.

Detailliertes Verständnis grundlegender Filter und Analysen der digitalen Bildverarbeitung und deren medizinische Relevanz.

Kompetenzen

Wissen:

• Funktion und relevante Parameter bewährter bildanalytischer Verfahren kennen

Verständnis:

- Zusammenhänge zwischen bildanalytischer Verfahren und der zu erwartenden Genauigkeiten interpretieren und kritisch diskutieren
- Grundlagen für die Methodik und die Entwicklung von Software für die Bildverarbeitung darstellen und eigenständig auf Fallstudien übertragen
- Das in Übungen vertiefte Vorgehen verständlich und präzise erklären und Arbeitsergebnisse präsentieren

Anwendung:

• Studierende wenden die theoretischen Grundlagen in Praktika unter Zuhilfenahme gängiger Softwaretools an

Zu erbringende Prüfungsleistung						
K1+ BÜ1,5	K1+ BÜ1,5					
Zusammensetzung der Modulprüfu	ng / Modulnote					
K1 + BÜ1,5						
Modulname	Modulcode					
Bildverarbeitung in der Medizin		BA4 - MT4				
Veranstaltungsname	Veranstaltungsart	Veranstaltungscode				
Bildverarbeitung in der Medizin (Vorlesung)	Vorlesung	BA4-MT4				
Lehrende/r	Fakultät	Arbeitsaufwand				
Prof. Dr. rer. nat. Roman Grothausmann	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 45 WS Eigenstudium: 55 WS				

Angebotshäufigkeit	ECTS	SWS	Sprache	Gruppengröße
nur im SoSe	3	3	Deutsch	54

Einführung in Medizinische Bildgebung und digitale Bildverarbeitung

- Bildgewinnung
- Digitalisierung, Speicherung, Bildformate
- Bildverbesserung, Filterung
- Bildsegmentierung
- Analyse

Modulname	Modulcode		
Bildverarbeitung in der Medizin	BA4 - MT4		
Veranstaltungsname Veranstaltungsart		Veranstaltungscode	
Bildverarbeitung in der Medizin (Praktikum)	Praktikum	BA4 - MT4	
Lehrende/r	Fakultät	Arbeitsaufwand	
Prof. Dr. rer. nat. Roman Grothausmann	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 30 WS Eigenstudium: 50 WS	

Angebotshäufigkeit	ECTS	SWS	Sprache	Gruppengröße
nur im SoSe	3	2	Deutsch	18

Begleitend zur Vorlesung werden im Praktikum mit gängiger Software und Frameworks (Fiji-ImageJ, Python, MATLAB oder Octave, etc.) die verwendeten Techniken und Algorithmen angewendet und analysiert.

Modulname	Modulcode
Medizininformatik	BA4 - MT5
Modulverantwortliche/r	Fakultät
Prof. Dr. habil. Claire Chalopin	Ingenieurwissenschaften und Gesundheit

Zuordnung zum Studiengang	
MedTech	

Dauer des Moduls	Empf. Semester	Modultyp	ECTS
1 Semester	4.	Pflicht	6

Voraussetzungen laut Prüfungsordnung	

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
1.	Medizininformatik (Vorlesung)	Pflicht	2	70
2.	Medizininformatik (Übung)	Pflicht	4	110
Summe (Pflicht und Wahlpflicht)			6	180

Qualifikationsziele

- 1. Wissen: Die Studierenden können grundlegende Konzepte der Medizininformatik benennen und beschreiben: das deutsche Gesundheitssystem, Informationssysteme, Standards und Terminologien, Datenmodellierung, Datenhaltung, Datenintegration, Data Governance, Datenschutz und -Sicherheit und Datennutzung.
- 2. Verstehen: Die Studierenden können:
- die Rolle der Medizininformatik in der Gesundheitsversorgung und Gesundheitswirtschaft erläutern,
- wichtige Anwendungsfelder der Medizininformatik und IT-Landschaften im Krankenhaus beschreiben.
- 3. Analysieren: Die Studierenden können die Chancen und Herausforderungen der Medizininformatik kritisch reflektieren.
- 4. Anwenden: Die Studierenden können die Konzepte der Medizininformatik an konkrete Anwendungsfälle ableiten und anwenden.

Zu erbringende Prüfungsleistung					
K2 / PR					
Zusammensetzung der Modulprüfung / Modulnote					
K2 / PR					
Modulname		Modulcode			
Medizininformatik		BA4 - MT5			
Veranstaltungsname	Veranstaltungsart	Veranstaltungscode			
Medizininformatik (Vorlesung) Vorlesung		BA4-MT5			
Lehrende/r Fakultät		Arbeitsaufwand			
Prof. Dr. habil. Claire Chalopin	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 30 WS Eigenstudium: 40 WS			

Angebotshäufigkeit	ECTS	SWS	Sprache	Gruppengröße
nur im SoSe	3	2	Deutsch	30

- o Informationssysteme
- O Kommunikationsstandards und Forschungsinfrastrukturen im Gesundheitswesen, Entwicklung und Potentiale der Medizinischen Informatik,
- o Datenmanagement in der Medizinischen Informatik,
- o spezielle klinische Anwendungs- und Informationssysteme, Klinikkommunikation, Kommunikationsserver.

Die Inhalte werden ständig an die aktuellen Entwicklungen dieses dynamischen Gebietes angepasst.

Modulname		Modulcode			
Medizininformatik		BA4 - MT5			
Veranstaltungsname	Veranstaltungsart	Veranstaltungscode			
Medizininformatik (Übung)	Übung	BA4 - MT5			
Lehrende/r	Fakultät	Arbeitsaufwand			
N.N.	Ingenieurwissenschaften und Gesundheit	Präsenzstudium: 60 WS Eigenstudium: 50 WS			

Angebotshäufigkeit	ECTS	SWS	Sprache	Gruppengröße
nur im SoSe	3	4	Deutsch	16

1	L _ l	lte		
ını	na	ITE		

Übung im praktischen Einsatz von und Umgang mit den Systemen und Standards, welche in der Vorlesung thematisiert werden.