

### Wärme aus Abwasser

### **Green Building Forum - Holzminden - 6. Mai 2025**

Dr.-Ing. Niklas Trautmann

Prof. Dr.-Ing. Peter Hartwig

Kontakt:

+49 511 132 22182

## Übersicht

### Abwasser: viele Inhaltsstoff und relativ warm!

Temperatur:

ca. 10 – 21 °C

Potenzial: Ausreichend zur Beheizung von ca. 10% der Gebäude

Wärme und Kältenutzung möglich (letztere ggf. auch ohne Wärmepumpe) Siedlungsnah verfügbar

Ca. 15% der einem konv. Neubau zugeführten Energie gehen über das Abwasser verloren



### Es wird/ist Stand der Technik!

#### Abwasser als Wärmequelle: Pilotprojekt von Avacon in Hannover

avacon

Wärme aus

Abwasser

02.04.2025 / Solarserver / Sektorenkopplung / Wärmepumpe / Wirtschaft

#### PV und Wärmepumpen nutzen Abwasserwärme für Kö Quartier



Energiegewinnung aus Abwasser

#### **Untenrum warm**

Aus Abwasser lässt sich nachhaltig Energie gewinnen. Wir klären die Fragen zu einer noch unterschätzten Technologie.

22.4.2025 15:07 Uhr

1 teilen



Da werden die warmes Spülwasser

nenetz, das die Energie des --- --- d-- C-b=--d-d=-b---

erung.

Therm-Liner als Wärmetauscher im Kanal

#### Avacon Natur, Tochter des Energieversorgers Avacon, und das Bau Energie aus Abwasser: Vom Schmuddelimage zur Schatzkammer

In der Kanalisation steckt mehr als stinkende Brühe: Mit seinem Therm-Liner gewinnt das Tiefbauunternehmen Uhrig saubere und kostengünstige Energie aus Abwasser

Ulrich Steudel

Abwasser - igittl Während die meisten Menschen die Nase rümpfen, sieht das Tiefbauunternehmen Uhrig aus Geisingen in der Kloake einen Schatz, den es zu heben gilt. Denn im Abwasser steckt Energie, die umso wertvoller ist, weil für ihre Erzeugung keine fossilen Brennstoffe verheizt werden müssen. Als Spezialist für Kanalbau hat man bei der Firma Uhrig das Potenzial erkannt, das sich in der

#### Beim Preis mit Öl und Gas konkurrenzfähig

14 Prozent des Wärmebedarfs aller Gebäude könnte mit Energie aus Abwasser erzeugt werden, bescheinigt eine von der Beratungsagentur Enervis erstellte Studie dem Tiefbaubetrieb. "Vom Preis her kann Energie aus Abwasser bereits heute mit Öl und Gas konkurrieren, ganz abgesehen vom erheblichen Effekt für den Klimaschutz", sagt Stephan von Bothmer, bei Uhrig für die Geschäftsentwicklung im Bereich Energie aus Abwasser zuständig.

Das brachliegende Potenzial ist gewaltig, laut der Enervis-Studie liegt es bei rund 100 Terrawattstunden. Selbst bei einem konservativen Ausbauhorizont von 35 TWh bis 2030 könnten etwa 5.5 Prozent der Heizwärme in Deutschland aus

Abwasser erzeugt werden - mit Vorteilen für die Umwelt und bei den Kosten. Enervis prognostiziert eine Reduktion von CO2-Emissionen um 39 Millionen Tonnen.

Über den Therm-Liner des Tiefbauunternehmens Uhrig wird dem Abwasser Wärme entzogen, die zum Heizen oder Kühlen genutzt werden kann. - © Uhrig

Außerdem ließen sich 14 Milliarden Euro sparen, weil Wärme aus Abwasser kostengünstiger ist als konventionelle Heiztechnologien. Die Rechnung





Quelle: TAZ

### **Inhalt**

- 1. Grundidee und technische Randbedingungen
- 2. Lösungen und Beispiele
- 3. Risiken und Herausforderungen
- 4. Wirtschaftlichkeit
- 5. Zusammenfassung und Empfehlungen



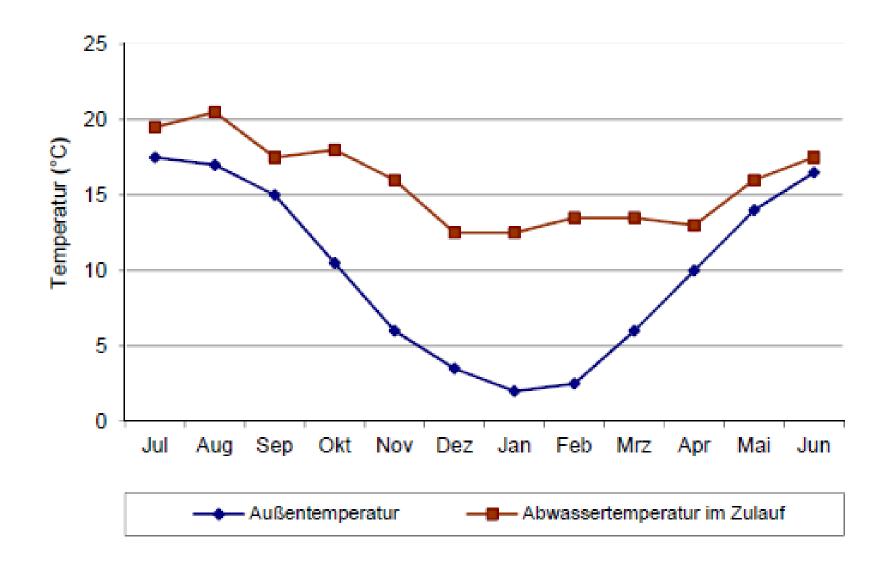
## Literatur zum technischen Einstieg und Planung



www.dwa.de



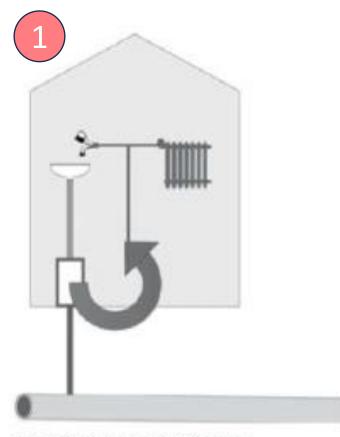
### DWA-Regelwerk


#### Merkblatt DWA-M 114

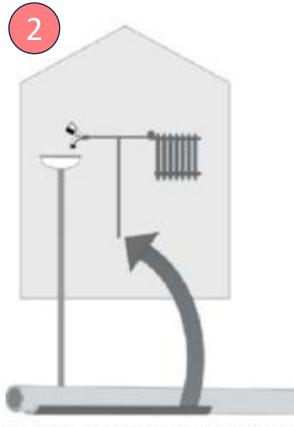
Abwasserwärmenutzung

April 2020

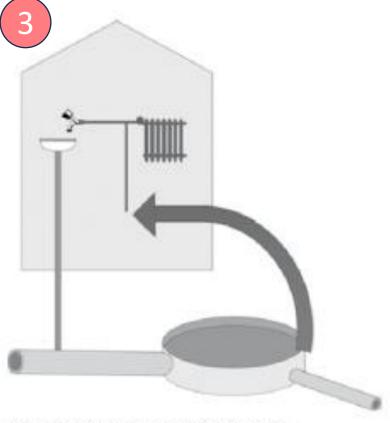



## Potenzial: Jahresverlauf Abwassertemperatur









### Grundidee



Rückgewinnung im Gebäude (aus Rohabwasser)



Rückgewinnung im Abwasserkanal (aus Rohabwasser)

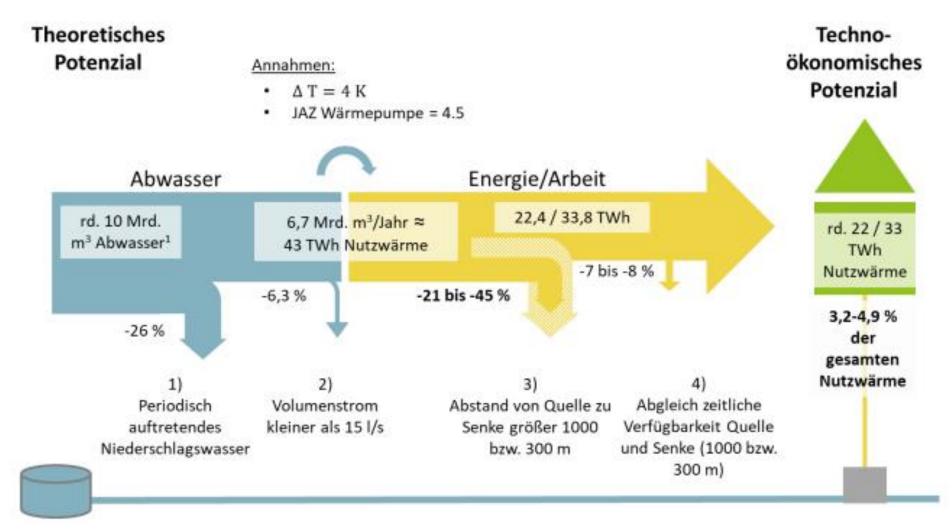


Rückgewinnung in der Kläranlage (aus gereinigtem Abwasser)

Quelle: DWA-M 114



### **Und direkt am Ort des Anfalls**




Quelle: Warmduscher.de

<u>Laut Hersteller:</u> Bis zu 55% Energieeinsparung fürs Duschen....



### **Potenzial**

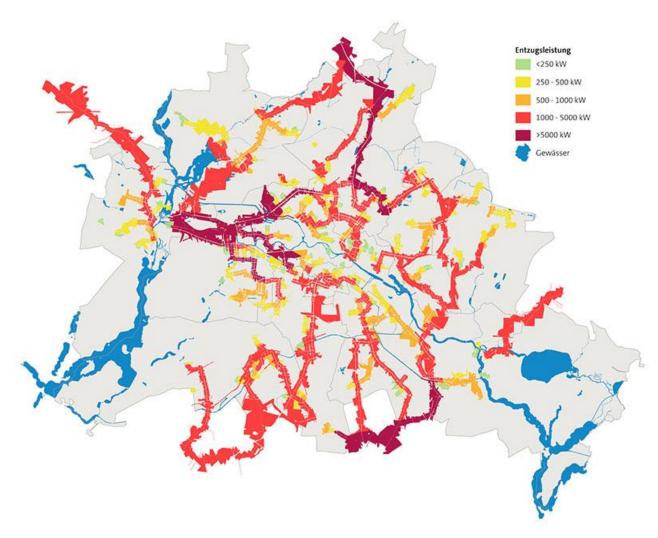


Quelle: Fritz & Pehnt, 2018



## Randbedingungen

| Technische Einschränkungen                | Ökonomische<br>Einschränkungen               |
|-------------------------------------------|----------------------------------------------|
| Nennweite Kanal (min. DN400)              | Durchflussrate Abwasser in Kanal             |
| Abwassertemperatur<br>Eintritt Kläranlage | Mindestabnahme<br>(Leistung bei Verbraucher) |

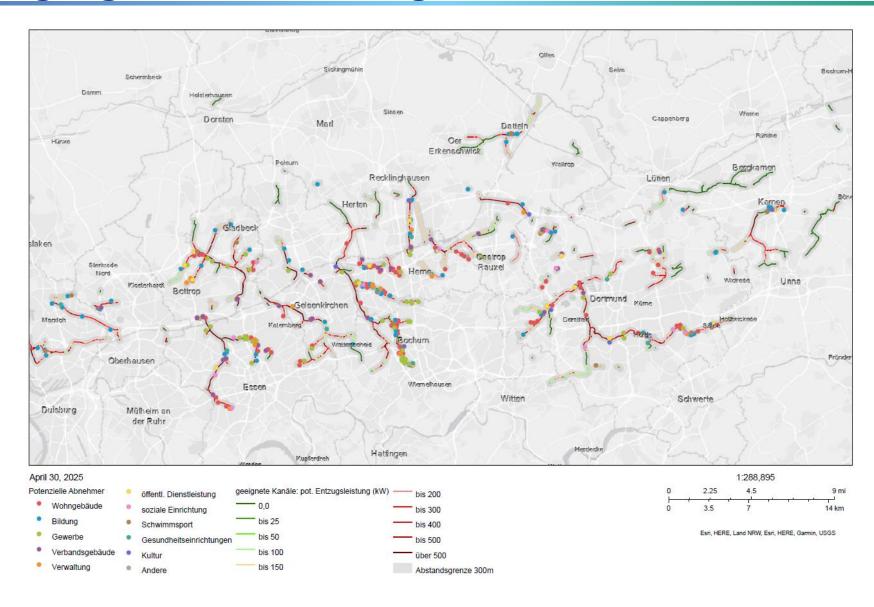

**Zeitliches Potenzial** 

(Monatliche Variation des Trinkwarmwassers und Heizwärmeverbrauchs)

Räumliches Potenzial (Distanz zwischen Wärmequelle und -Senke)



# Randbedingungen: Wärmeverfügbarkeit

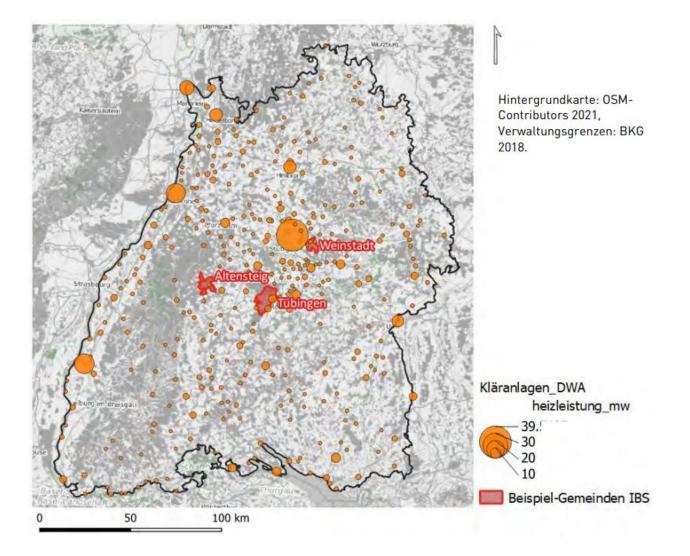



Abwasserwärmeatlas: Potenzial sehen und nutzen in Berlin

Quelle: Berlin Wasserbetriebe



# Randbedingungen: Wärmeverfügbarkeit und Nutzer




**Im Ruhrgebiet** 

Quelle: EGLV



# Randbedingungen: Wärmeverfügbarkeit Ablauf Kläranlage



In Baden-Württemberg

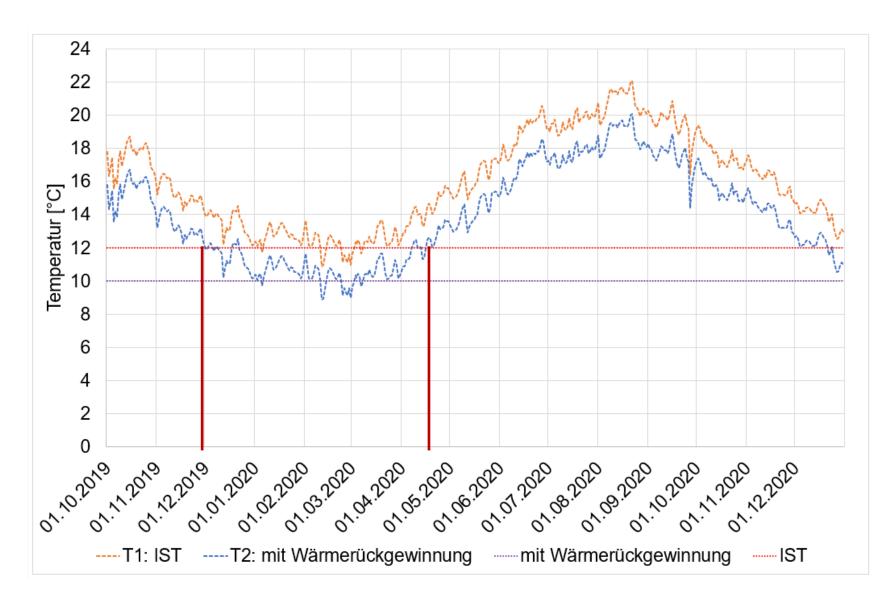
Quelle: Münch et al., 2022



## Randbedingungen: Einfluss auf Kläranlage

- 1. Kläranlagen arbeiten mit biologischen Prozessen (Temperaturabhängig!)
- 2. Reduzierung der Abwassertemperatur um 1°C erfordert eine Volumenvergrößerung des Belebungsbeckens um 10 %!!!
- 3. Wärmeüberschuss im Sommer, aber Abwassertemperaturreduzierung gewässerökologisch relevant.

**Beispiel:** BS Energy – 2 MW Wärmepumpe im Zulauf zur Kläranlage Steinhof


| Parameter                 |      | stfall 1<br>(IST) |      | astfall 2<br>% Zulauf) |      | astfall 3<br>-10% N) |
|---------------------------|------|-------------------|------|------------------------|------|----------------------|
| T (°C)                    | 12°C | 11°C              | 12°C | 11°C                   | 12°C | 11°C                 |
| N <sub>ges</sub> (mg/l)   | 9,8  | 10,5              | 9,9  | 10,5                   | 7,9  | 8,1                  |
| NH <sub>4</sub> -N (mg/l) | 4    | 5,2               | 4    | 5,2                    | 3,3  | 4,2                  |

Numerische Modellierung der temperaturabhängigen Abbauleistung in der Kläranlage

Grenzwert: 12 mg Nges /l



## Randbedingungen: KA Absenkung der Bemessungstemperatur



I.d.R müssen KA die Ablaufwerte bei Abwassertemperaturen < 12°C NICHT einhalten!

Höhere Belastung der Gewässer bei künstlicher Absenkung der Abwassertemperatur

$$T_{BB} = T_{abwasser} + T_{Wärmeentnahme}$$

Ca. 5 Monate mit  $T_{BB}$  < 12 °C

Aber: je größer die Distanz von Wärmeentzug zur Kläranlage desto größer die Wiedererwärmung durchs Erdreich.



# Lösung: Abwasserwärmetauscher Inhouse



Wärmetauscher Bis zu 250 kW

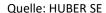


Quelle: revincus GmbH

### Rechen zur Vorbehandlung



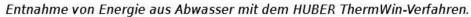



# Lösungen: Abwasserwärmetauscher














# Lösung: Wärmerückgewinnung im Bypass







## **Beispiel: Klimatisierung Toronto Western Hospital**

Wärmegewinnung: 10 MW

Kältegewinnung: 9 MW





# Lösung: Abwasserwärmetauscher im Kanal

2







Quelle: Uhrig-Group



### Lösung: Wärmtauscher im Abwasserhebewerk

### Schneckentrog mit Wärmetauscher



**KUHN GmbH Technische Anlagen, 74746 Höpfingen** 

### **Energieertrag**

- ca. 6 10 kW/m<sup>2</sup> Kontaktfläche
- Auch als Kühlschnecken verwendbar



Pumpstationen in der Siedlung

Auf der Kläranlage



### Beispiel: Binningen (CH) – Seit > 20 Jahren in Betrieb



Versorgung von 68 Gebäuden mit verschiedener Nutzung (Schulhäuser, private und kommunale Bauten) in der Gemeinde Binningen (14.000 Einwohner) in einem Wärmeverbund mit Wärme aus dem Abwasser der nahe gelegenen Kanalisation.

Bisher keine Verstopfungsprobleme.

### Kennzahlen Binningen

Wärmeproduktion WP: 2'400 MWh/a

therm. Leistung WP: 380 kW

Anzahl Wohnungen: 300

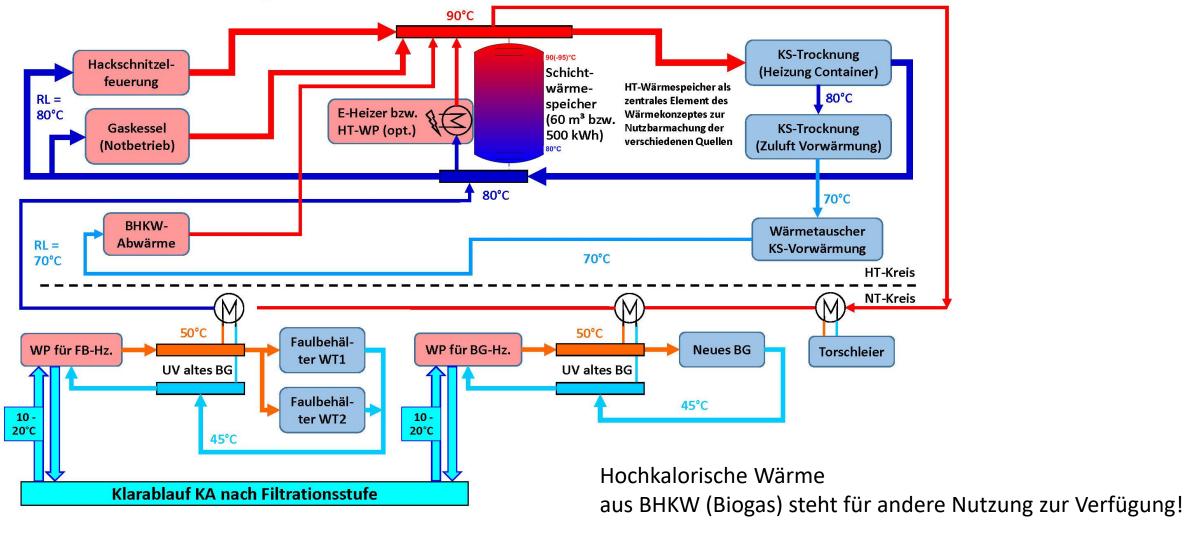
Länge WT: 140 m

spezifische Leistung WT: 1,8 kW/m

Quelle: Leitfaden\_Waerme\_aus\_Abwasser (BW)



# **Weitere Beispiele**


| Projekt (Standort)        | Inbetriebnahme | Leistung / Versorgung   | Besonderheiten und Quelle             |
|---------------------------|----------------|-------------------------|---------------------------------------|
| Hamburg, Klärwerk         | geplant 2025   | 60 MW                   | Erste Großwärmepumpe Deuts            |
| Köhlbrandhöft –           |                | (für 39.000 Haushalte)  | chlands im Abwasser; spart            |
| Fernwärmeauskopplung aus  |                | (rail estade trademand) | ~66.000 t CO₂/Jahr                    |
| Kläranlagen-Ablauf        |                |                         | <u>hamburgwasser.de</u>               |
| Waiblingen – kommunale    | 1986           | 560 kW                  | Pionierprojekt: Abwasser-             |
| Gebäude via Kläranlage in |                | (Wärmepumpenleistung)   | Wärmepumpe versorgt seit              |
| Baden-Württemberg         |                |                         | 1986 Rathaus & Schulen,               |
|                           |                |                         | unterstützt von BHKW <u>ifeu.de</u> . |
| Stadtquartier Stuttgart-  | In Bau         | 30°C                    | Kalte Nahwärme mit                    |
| Neckarpark für 450 WE     |                |                         | Abwasserwärme für ein                 |
|                           |                |                         | energieeffizientes                    |
|                           |                |                         | Stadtquartier                         |
|                           |                |                         | <u>ifeu.de</u> .                      |

Wärmepumpe HH-Köhlbrandhöft



## Beispiel: Wärmekonzept KA Lindau

#### Heizungsschema KA Lindau – Zukunftsszenario mit HT und NT-Kreis





### Wirtschaftlichkeit

- 1. Stark Standortspezifisch! (Leistung, Entfernung Quelle-Senke)
- 2. Wärmetauscher im Kanal: Ca. 500 1.000 EUR/kW Wärmtauscherleistung
- 3. An guten Standorten runter bis 8 ct/kWh Wärme

Inkl.

Kapitalkosten Wärmetauscher inkl. der Verbindungsleitungen Kapitalkosten Wärmepumpe Pumpen- und Wärmepumpenstrom Wartungs- und Instandhaltungsaufwand

4. Contractingmodelle sinnvoll



# Risiken und Herausforderungen

| Kategorie                       | Risiko/Herausforderung                                                                                                                    | Erläuterung                                                                                               |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Hydraulik & Kläranlageneinfluss | <ul> <li>Übermäßige Abkühlung des Zulaufs → Biologie-<br/>Einbußen</li> <li>Mindest-Zulauftemp. 10 °C empfohlen</li> </ul>                | Wärmeentzug ist auf $\Delta T \approx 3-5$ K und Trockenwetterabfluss ≥15 l s <sup>-1</sup> zu begrenzen. |
| Fouling & Wartung               | <ul> <li>Sielhaut- und Fettablagerungen reduzieren</li> <li>Regelmäßige mechanische Reinigung/Nachtspülung<br/>nötig</li> </ul>           | Verschmutzung betrifft besonders Freispiegel-<br>Tauscher                                                 |
| Bauliche Integration            | <ul> <li>Platzbedarf (Schächte, Heizzentrale)</li> <li>Eingriff in Bestandskanal nur bei ausreichender DN &amp; stat. Reserven</li> </ul> | Nachträglicher Einbau verlangt Kanalzustands-<br>bewertung                                                |
| Energie- & Wirtschaftlichkeit   | <ul> <li>Lange Wärmetransportleitung &gt;150–500 m erhöht<br/>Verluste<br/>Kleine Anlagen &lt;150 kW meist unwirtschaftlich</li> </ul>    | Richtwerte aus Praxisstudien; Wärmenetz oder Quartiersverbund erhöht Volllaststunden.                     |
| Genehmigung & Datenzugang       | <ul> <li>Heterogene Zuständigkeiten, fehlende Kanaldaten für Dritte</li> <li>Tarif-/Gebührenmodelle oft ungeklärt</li> </ul>              | UBA-Ad-hoc-Papier empfiehlt Informations- und Nutzungsrechte auf Landesebene.                             |
| Versorgungssicherheit           | <ul><li>Spitzenlasten im Winter &gt; WP-Nennleistung</li><li>Strompreisrisiko für WP-Betrieb</li></ul>                                    | Bivalente Systeme mit Kessel/BHKW sichern Lastspitzen; Strompreisklauseln in Wärmelieferverträgen.        |
| Langzeitbetrieb                 | <ul><li>Materialkorrosion (H2S, Chloride)</li><li>Ersatzteil- und Rückbaukosten</li></ul>                                                 | Auswahl korrosionsbeständiger Werkstoffe (V4A, PE-HD); Rückbaupflicht vertraglich regeln.                 |



## Zusammenfassung und Empfehlungen

- 1. Bereits viele Projekte (> 100) in Deutschland in Umsetzung => Lösungen sind Stand der Technik!
- 2. Leistungen von 20 kW 60 MW realisiert oder in Realisierung
- 3. Abwasser ist ein zuverlässiger Wärmelieferant
- 4. Technische Lösungen für viele Anwendungsfälle vorhanden
- 5. Wirtschaftliche Umsetzbarkeit stark Standortspezifisch! Quelle Senke
- 6. Rechtlicher Rahmen noch nicht einheitlich geklärt
- 7. Frühzeitig mit Machbarkeitsstudie beginnen: Hydraulische Simulation, Temperaturmessung & Wirtschaftlichkeitsrechnung nach DWA-M 114, Einbindung der Beteiligten (Kanalnetzbetreiber, Tiefbauamt wenn auf öffentlichem Grund, Stadtplanung, Wärmenutzer, Planungsbüro)
- 8. Grenzwerte verbindlich vereinbaren: ΔT-Limit, Mindestzulauftemperatur & Wartungspflichten in Gestattungsverträgen (BW stellt Mustervertrag zur Verfügung).
- 9. Quartiersverbund anstreben: Kombination mit warmer und kalter Fernwärme oder Hybrid-Netzen verbessert COP und Volllaststunden
- 10. Große Verbraucher erlauben die höchste Wirtschaftlichkeit

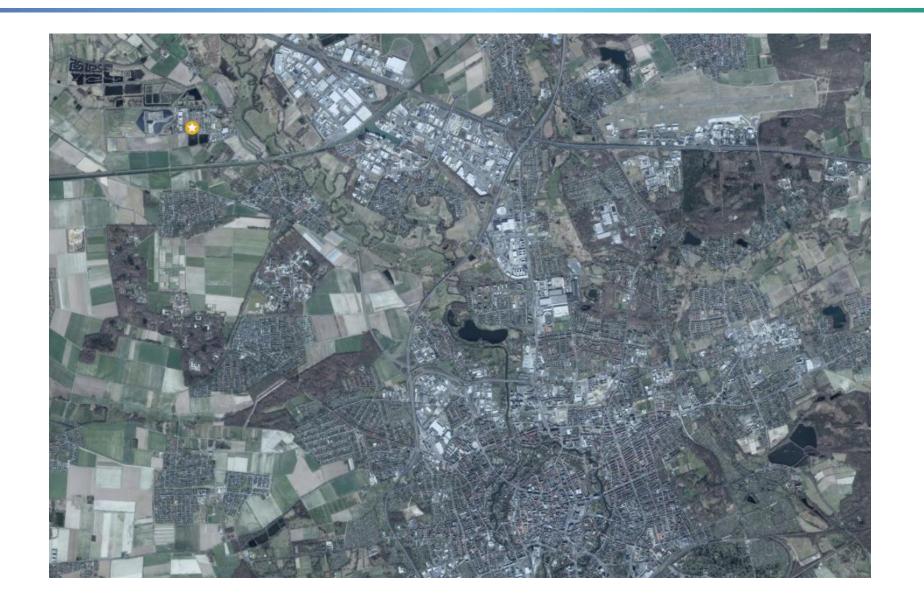




### Vielen Dank für die Aufmerksamkeit!

### Fragen?

RAN AN DIE WÄRME!


### Kontakt:

Dr.-Ing. Niklas Trautmann

E-Mail: trautmann@aquawaste.de

Telefon: 0511 13222182







### 2. Nutzung der im Abwasser enthaltenen Energie - Wärme



https://um.baden-wuerttemberg.de/fileadmin/redaktion/m-um/intern/Dateien/Dokumente/5\_Energie/Energieeffizienz/Abwasserwaermenutzung/Leitfaden\_Ratgeber/Leitfaden\_Waerme\_aus\_Abwasser.pdf

# Energiegehalt im Abwasser in Form von Wärme

- Abkühlung um 1 Kelvin ergibt
   1,5 kWh/m³ Abwasser
- Zum Vergleich:
  Aus 1 m³ Abwasser können ca. 0,05 m³ Klärgas erzeugt werden mit einem Energiegehalt von 0,3 kWh/m³ Abwasser
- Nutzungsmöglichkeit der niederkalorischen Wärme schränkt Wirtschaftlichkeit ein (Wärmekonzept Kläranlage sinnvoll)
- Reduzierung der Abwassertemperatur um 1°C erfordert eine Volumenvergrößerung des Belebungsbeckens um 10 % (Temperaturfaktor Bemessung 1,103<sup>(T-15°C)</sup>)

International GmbH

 Wärmeüberschuss im Sommer, aber Abwassertemperaturreduzierung gewässerökologisch relevant.

# **Technische Verfahren**

| Verfahrensschritt    | Typische technische Lösungen                                   | Kurzbeschreibung                                                                               | Relevante Quellen                          |  |
|----------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------|--|
| Entnahmepunkt        | Gebäudeintern (Fallstrang-/Grauwasser-                         | Wärme wird bereits im Haus aus Dusch- oder                                                     | DWA-M 114, Kap. 4.2.2                      |  |
|                      | Tauscher)                                                      | Prozessabwasser entzogen.                                                                      |                                            |  |
|                      |                                                                | a) Nachträglich eingebaute Kanalwärme-                                                         | Wärmeübertrager sitzen direkt im           |  |
|                      | Kanal                                                          | übertrager (Halbschalen o. ä.)                                                                 | Freispiegelkanal; Abwasser überströmt      |  |
|                      |                                                                | b) Werksseitig integrierte Rohrsegmente                                                        | Lamellen/Schalen.                          |  |
|                      |                                                                | Teilstrom wird über Platten- oder Doppelrohr                                                   | <u>-</u>                                   |  |
|                      | By-pass / Extern                                               | tauscher außerhalb des Kanals geführt;                                                         | DWA-M 114, S. 22 (4.2.3.4)                 |  |
|                      |                                                                | vorteilhaft bei geringen Rohrdurchmessern.                                                     |                                            |  |
|                      |                                                                | Druckrohr-Wärmetauscher mit eingezogenem                                                       | 1                                          |  |
|                      | Druckleitung                                                   | Innenrohr; hohe Strömungsgeschwindigkeit                                                       | DWA-M 114, S. 23 (4.2.3.5)                 |  |
|                      |                                                                | → kompakte Bauform.                                                                            |                                            |  |
|                      |                                                                | Reinigtes Abwasser wird im Gerinne mit                                                         |                                            |  |
|                      | Vläranlagan Ahlauf                                             | Rinnen- oder Behältertauscher oder im                                                          | VA Artikal 2022 Abb 1 u 2 Kan 2 2          |  |
|                      | Kläranlagen-Ablauf                                             | Nebenstrom (Rohrbündel) genutzt – größtes                                                      | KA-Artikel 2023, Abb. 1 u.2, Kap. 2.2      |  |
|                      |                                                                | Volumen, stabile Temp.                                                                         |                                            |  |
| Wärmeübertragung     | Kalorischer Ansatz                                             | Entzugsleistung $P = \rho \cdot c_p \cdot Q \cdot \Delta T (\rho \approx 1 \text{ kg I}^{-1})$ | Berlin-Leitfaden, S. 76 (Formel 0.1)       |  |
| waineubertragung     |                                                                | ΔT typ. 3–5 K).                                                                                | beriiii-Leitiadeii, 3. 70 (i oi iiiei 0.1) |  |
|                      |                                                                | COP abhängig von Abwasser-/Vorlauftemp.;                                                       |                                            |  |
| Anlagenseite         | Wärmepumpen – mono- oder bivalent                              | 2-4 bei 5–15 °C Quelle und 55–70 °C Vorlauf;                                                   | DWA-M 114, Kap. 5.1/5.4, Abb. 15           |  |
|                      |                                                                | Groß-WP bis >2 MW.                                                                             |                                            |  |
|                      |                                                                | a) Kalte Nah-/Fernwärme 8–25 °C, dezentrale                                                    |                                            |  |
|                      | Netzkonzepte                                                   | WP                                                                                             | DWA-M 114, S. 34–35 (Bild 19/20)           |  |
|                      | Netzkonzepte                                                   | b) Warme Netze 40–70 °C, zentrale WP; oft                                                      | DVA-IVI 114, 3. 34-33 (Bild 19/20)         |  |
|                      |                                                                | mit Spitzenkessel/BHKW kombiniert.                                                             |                                            |  |
|                      | Temperatur- und Durchflussmonitoring,                          |                                                                                                |                                            |  |
| Regel- & Messtechnik | Gleichlaufregelung der WP, optionale                           | DWA-M 114, Kap. 11.2/11.5                                                                      |                                            |  |
|                      | Automatikreiniger (Schaber, Spüleinrichtung) im Kanaltauscher. | DVVA IVI 114, Nap. 11.2/11.3                                                                   |                                            |  |

